Commit 27989ea2 by Raphael CAUDERLIER

### [doc] fix small mistakes in the documentation of the resolution module

parent 66b9cc9f
 ... ... @@ -773,11 +773,13 @@ combinator) and then uses the classical lemma variables which are to be interpreted as universally quantified. A *quantified clause* is an explicitly universally quantified clause. The simplest way to define a clause is by parsing the corresponding The types for atoms, litterals, clauses, and quantified clauses are declared with their constructors in [[./fol/clauses.dk][fol/clauses.dk]]. However, the simplest way to define a clause is by parsing the corresponding proposition using the partial function =resolution.qclause_of_prop=: - =resolution.qclause_of_prop : fol.prop -> resolution.qclause= - =resolution.qclause_of_prop : fol.prop -> clauses.qclause= - =resolution.qclause_of_prop_correct : p : fol.prop -> fol.proof p -> resolution.qcproof (resolution.qclause_of_prop p)= A resolution proof is a derivation of the empty clause ... ... @@ -786,11 +788,11 @@ combinator) and then uses the classical lemma #+BEGIN_example l₁ ∨ … ∨ lₙ σ = mgu(lᵢ, lⱼ) —-—————————————————————————————– Factorisation ————————————————————————————————— Factorisation (l₁ ∨ … ∨ lⱼ₋₁ ∨ lⱼ₊₁ ∨ … ∨ lₙ)σ l₁ ∨ … ∨ lₙ l'₁ ∨ … ∨ l'ₘ σ = mgu(lᵢ, ¬l'ⱼ) ——————————————————–—————————————————–————————–—––——————————————————— Resolution ——————————————————————————————————————————————————————————————————————— Resolution (l₁ ∨ … ∨ lᵢ₋₁ ∨ lᵢ₊₁ ∨ … ∨ lₙ ∨ l'₁ ∨ … ∨ l'ⱼ₋₁ ∨ l'ⱼ₊₁ ∨ … ∨ l'ₘ)σ #+END_example ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!