timedAutomaton.ml 46.8 KB
Newer Older
mcolange's avatar
mcolange committed
1
open Common
2
open Batteries.Printf
mcolange's avatar
mcolange committed
3
open Dbm
mcolange's avatar
mcolange committed
4 5 6 7
open Uta

module type TIMED_AUTOMATON =
sig
mcolange's avatar
mcolange committed
8
  module MDbm : BIG_IDBM
9

mcolange's avatar
mcolange committed
10 11 12
  type timed_automaton
  type discrete_state
  type transition
13
  type edge
mcolange's avatar
mcolange committed
14

15 16
  module DS : Hashtbl.HashedType with type t = discrete_state

17
  val clocks : timed_automaton -> VarContext.t
18
  val is_state_equal : discrete_state -> discrete_state -> bool
mcolange's avatar
mcolange committed
19 20
  val initial_discrete_state : timed_automaton -> discrete_state
  (* does it belong here? If so, so does type for extended_state... *)
mcolange's avatar
mcolange committed
21
  val initial_extended_state : timed_automaton -> discrete_state * MDbm.Dbm.t
22 23
  val transitions_from : timed_automaton -> discrete_state ->
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state) list
mcolange's avatar
mcolange committed
24
  val transition_fields : timed_automaton -> transition ->
25
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state)
26 27
  val guard_of_transition : timed_automaton -> transition -> UDbm.Dbm.t
  val invariant_of_discrete_state : timed_automaton -> discrete_state -> UDbm.Dbm.t
mcolange's avatar
mcolange committed
28 29
  val is_urgent_or_committed : timed_automaton -> discrete_state -> bool
  val is_target : timed_automaton -> discrete_state -> bool
Maximilien Colange's avatar
Maximilien Colange committed
30
  val rate_of_state : timed_automaton -> discrete_state -> int
mcolange's avatar
mcolange committed
31
  val lu_bounds : timed_automaton -> discrete_state -> Udbml.Carray.t * Udbml.Carray.t
32
  val m_bounds : timed_automaton -> discrete_state -> Udbml.Carray.t
mcolange's avatar
mcolange committed
33 34
  val global_m_bounds : timed_automaton -> int array
  val global_m_invariant : timed_automaton -> UDbm.Dbm.t
mcolange's avatar
mcolange committed
35 36 37 38
  (** print functions *)
  val print_discrete_state  : 'b BatIO.output -> timed_automaton -> discrete_state -> unit
  val print_transition : 'b BatIO.output -> timed_automaton -> transition -> unit
  val print_timed_automaton : 'b BatIO.output -> timed_automaton -> unit
mcolange's avatar
mcolange committed
39
  val print_extended_state : 'b BatIO.output -> timed_automaton -> (discrete_state * MDbm.Dbm.t) -> unit
40 41
  val transition_to_string : timed_automaton ->
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state) -> string
mcolange's avatar
mcolange committed
42
  val from_file : string -> string -> ?scale:int -> ?enlarge:int -> unit -> timed_automaton
mcolange's avatar
mcolange committed
43 44
end

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
module MBoundedAutomaton (TA : TIMED_AUTOMATON) =
struct
  include TA

  let bounding_transitions ta state=
    let n = VarContext.size (TA.clocks ta) in
    let m = TA.global_m_bounds ta in
    let rec build_list cl accu =
      if (cl = n) then accu
      else
        let guard = Dbm.UDbm.Dbm.create n in
        Dbm.UDbm.Dbm.set_init guard;
        Dbm.UDbm.Dbm.constrain guard (0, cl, (-m.(cl)-2, Udbml.Basic_types.DBM_WEAK));
        Dbm.UDbm.Dbm.constrain guard (cl, 0, (m.(cl)+2, Udbml.Basic_types.DBM_WEAK));
        assert(not(Dbm.UDbm.Dbm.is_empty guard));
        build_list (cl+1) ((state, guard, [(cl, m.(cl)+1)], state)::accu)
    in 
    build_list 1 []

  let transitions_from ta state =
    List.rev_append (TA.transitions_from ta state) (bounding_transitions ta state)

  let invariant_of_discrete_state ta state =
    let inv = TA.invariant_of_discrete_state ta state in
    let n = VarContext.size (TA.clocks ta) in
    let m = TA.global_m_bounds ta in
    for cl = 0 to n-1 do
      Dbm.UDbm.Dbm.constrain inv (cl, 0, (m.(cl) + 2, Udbml.Basic_types.DBM_WEAK))
    done;
    assert(not(Dbm.UDbm.Dbm.is_empty inv));
    inv
    
end

mcolange's avatar
mcolange committed
79 80 81 82 83 84 85 86
module type TIMED_GAME = 
sig
  include TIMED_AUTOMATON
  
  (* I am not convinced it is the better interface *)
  val is_controllable : timed_automaton -> edge -> bool
end

mcolange's avatar
mcolange committed
87
module GenericUAutomaton (BDbm : BIG_IDBM) =
mcolange's avatar
mcolange committed
88
struct
mcolange's avatar
mcolange committed
89
  module MDbm = BDbm
mcolange's avatar
mcolange committed
90
  module Dbm = BDbm.Dbm
91

92
  include Querybuilder
mcolange's avatar
mcolange committed
93

94 95
  (** Expression factory functions, to be registered as callbacks from C *)
  let cb_expression_constant i = Constant i
96

97 98 99
  let cb_expression_array varcont constcont clockcont tmp name sons =
    if ScopeVarContext.arraymem varcont (tmp, name) then
      let arrayid = ScopeVarContext.index_of_array varcont (tmp, name) in
100
      Array(arrayid, sons)
101 102
    else if (ScopeVarContext.arraymem varcont (None, name)) then
      let arrayid = ScopeVarContext.index_of_array varcont (None, name) in
103
      Array(arrayid, sons)
104 105
    else if (ScopeVarContext.arraymem constcont (tmp, name)) then
      let arrayid = ScopeVarContext.index_of_array constcont (tmp, name) in
106 107 108 109
      ConstArray(arrayid, sons)
    else if (ScopeVarContext.arraymem constcont (None, name)) then
      let arrayid = ScopeVarContext.index_of_array constcont (None, name) in
      ConstArray(arrayid, sons)
110 111 112 113 114 115
    else if (ScopeVarContext.arraymem clockcont (tmp, name)) then
      let arrayid = ScopeVarContext.index_of_array clockcont (tmp, name) in
      ClockArray(arrayid, sons)
    else if (ScopeVarContext.arraymem clockcont (None, name)) then
      let arrayid = ScopeVarContext.index_of_array clockcont (None, name) in
      ClockArray(arrayid, sons)
116 117
    else
      failwith (sprintf "Undefined array <%s>" name)
118
  
119
  let cb_expression_variable constcont const_values varcont tmp name =
120
    (* is it a local constant? *)
121 122
    if (ScopeVarContext.mem constcont (tmp, name)) then
      let varid = ScopeVarContext.index_of_var constcont (tmp, name) in
123 124
      Constant(Hashtbl.find const_values varid)
    (* is it a global constant? *)
125 126
    else if (ScopeVarContext.mem constcont (None, name)) then
      let varid = ScopeVarContext.index_of_var constcont (None, name) in
127 128
      Constant(Hashtbl.find const_values varid)
    (* is it a local variable? *)
129 130
    else if (ScopeVarContext.mem varcont (tmp, name)) then
      let varid = ScopeVarContext.index_of_var varcont (tmp, name) in
131 132
      Variable(varid)
    (* is it a global variable? *)
133 134
    else if (ScopeVarContext.mem varcont (None, name)) then
      let varid = ScopeVarContext.index_of_var varcont (None, name) in
135
      Variable(varid)
136
    else
137 138
      failwith (sprintf "Undefined variable <%s>" name)

139
  let cb_expression_clock clockcont tmp name =
140
    (* is it a local clock? *)
141 142
    if (ScopeVarContext.mem clockcont (tmp, name) ) then
      let varid = ScopeVarContext.index_of_var clockcont (tmp,name) in
143 144
      Clock(varid)
    (* is it a global clock? *)
145 146
    else if (ScopeVarContext.mem clockcont (None, name) ) then
      let varid = ScopeVarContext.index_of_var clockcont (None,name) in
147
      Clock(varid)
148
    else
149 150 151 152 153 154 155
      failwith (sprintf "Undefined clock <%s>" name)

  let cb_expression_sum a b = Sum (a,b)
  let cb_expression_product a b = Product (a,b)
  let cb_expression_substraction a b = Substraction (a,b)
  let cb_expression_division a b = Division (a,b)

mcolange's avatar
mcolange committed
156 157 158
  (** A guard is a conjunction of atomic guards *)
  type guard = atomic_guard list

159
  (** clocks and variables updates *)
160 161 162 163 164
  type lvalue =
      ClockRef of clock_t
    | ClockArrayRef of int * expression list 
    | VarRef of int 
    | ArrayRef of int * expression list
165
  type update = lvalue * expression
mcolange's avatar
mcolange committed
166

167 168 169 170
  type chanref =
      ChanId of int
    | ChanArray of int * expression list

171
  (* Channels are assumed to be global, so are handled by VarContext *)
172 173 174 175
  let cb_channel_simple chancont chanName =
    let aid = VarContext.index_of_var chancont chanName in
    ChanId(aid)

176
  let cb_channel_array chancont arrayName indices =
177 178
    let aid = VarContext.index_of_array chancont arrayName in
    ChanArray(aid, indices)
179

180
  type simplechan = 
181 182
      SendChan of chanref
    | RecvChan of chanref
183 184
  

mcolange's avatar
mcolange committed
185 186 187 188
  type edge = {
    edgeSource : int;
    edgeGuard : guard;
    edgeDiscGuard : guard;
189
    edgeUpdates : update list;
mcolange's avatar
mcolange committed
190
    edgeTarget : int;
191
    edgeSync : simplechan option;
192
    edgeProc : int; (* proc id *)
193 194
    edgeControllable : bool;
    edgeCost : Costs.edge_cost; (* the cost of this edge [default is 0] *)
mcolange's avatar
mcolange committed
195 196 197 198 199 200 201 202
  }
  and location = {
    locId : int;
    mutable locName : string;
    locCommitted : bool;
    locUrgent : bool;
    locInvar : guard;
    locEdges : edge list;
203
    locProc : int; (* proc id *)
204 205 206
    locRate : Costs.loc_rate;
      (* the cost rate of time elapsing in this location [default is None] *)
      (* the cost rate of an array of location is the sum of their cost rates *)
mcolange's avatar
mcolange committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }
  and process = {
    procName : string;
    procId : int;
    procLocations : location array;
    procInitLoc : int;
  }
  type discrete_state = {
    stateLocs : location array;
    stateVars : int array;
  }

  type transition = InternalTrans of discrete_state * edge
                  | SyncTrans of discrete_state * edge * edge

222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  let hash_discrete_state s =
    let tmp = Array.fold_right
      (fun x r -> r + x.locId + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
      s.stateLocs 0
    in Array.fold_right
      (fun x r -> r + x + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
      s.stateVars tmp

  let is_state_equal s t =
    let rec aux_loc a b n =
      if (n < 0) then true else
      if (a.(n).locId = b.(n).locId) then
        if (n > 0) then
          aux_loc a b (n-1)
        else true
      else false
    in
    let rec aux_var a b n =
      if (n < 0) then true else
      if (a.(n) = b.(n)) then
        if (n > 0) then
          aux_var a b (n-1)
        else true
      else false
    in
    (aux_loc s.stateLocs t.stateLocs (Array.length s.stateLocs - 1))
    &&
    (aux_var s.stateVars t.stateVars (Array.length s.stateVars - 1))

  module DS = struct
    type t = discrete_state
    let equal = is_state_equal
    let hash = hash_discrete_state
  end

  module DSHashtbl = Hashtbl.Make(DS)

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  (** A succinct version of the above to be used in hash tables *)
  type _succinct_transition = int array * guard

  module GuardHashtbl = Hashtbl.Make(
    struct
      type t = _succinct_transition

      let equal x y = x = y

      let hash (a,b) =
        Array.fold_right
          (fun x r -> r + x + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
          a (Hashtbl.hash b)
    end
  )
mcolange's avatar
mcolange committed
275 276

  type timed_automaton = { 
277
    procs : process array; (* forall i: procs.(i).procId = i *)
278 279 280
    clocks : VarContext.t;
    vars : VarContext.t;
    constants : VarContext.t;
281
    constvalues : int array;
282
    channels : VarContext.t;
mcolange's avatar
mcolange committed
283
    init : discrete_state;
284
    query : query;
285 286
    lubounds_tbl : (int array * int array) DSHashtbl.t;
    lubounds_tbl_c : (Udbml.Carray.t * Udbml.Carray.t) DSHashtbl.t;
287
    mbounds_tbl_c : Udbml.Carray.t DSHashtbl.t;
288
    guards_tbl : UDbm.Dbm.t GuardHashtbl.t;
289
    invars_tbl : UDbm.Dbm.t DSHashtbl.t;
mcolange's avatar
mcolange committed
290
    global_mbounds : int array;
mcolange's avatar
mcolange committed
291 292 293 294 295 296 297 298
  }
  

  (********** PRINTING AUXILIARY FUNCTIONS **********)
  let rec string_of_exp ta e = 
    let string_of_exp = string_of_exp ta in
    (function
      | Constant c -> sprintf "%d" c 
299
      | Array(aid, indices) -> 
300 301 302
          List.fold_left (fun s x -> s ^ (string_of_exp x)) (VarContext.array_of_index ta.vars aid) indices
      | ConstArray(aid, indices) ->
          List.fold_left (fun s x -> s ^ (string_of_exp x)) (VarContext.array_of_index ta.constants aid) indices
mcolange's avatar
mcolange committed
303
      | Variable(id) -> VarContext.var_of_index ta.vars id
304
      | ConstVariable(id) -> VarContext.var_of_index ta.constants id
mcolange's avatar
mcolange committed
305
      | Clock(id) ->  VarContext.var_of_index ta.clocks id
306 307
      | ClockArray(aid,indices) ->
          let arrayName = VarContext.array_of_index ta.clocks aid in
308
          List.fold_left (fun s x -> s ^ "[" ^ (string_of_exp x) ^ "]") arrayName indices
mcolange's avatar
mcolange committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
      | Product(e1,e2) ->
        sprintf "%s * %s" (string_of_exp e1)
          (string_of_exp e2)
      | Sum(e1,e2) ->
        sprintf "(%s + %s)" (string_of_exp e1)
          (string_of_exp e2)
      | Division(e1,e2) ->
        sprintf "%s / %s" (string_of_exp e1)
          (string_of_exp e2)
      | Substraction(e1,e2) ->
        sprintf "(%s - %s)" (string_of_exp e1)
          (string_of_exp e2)
    ) e


  let string_of_atomic_guard ta = 
    let string_of_exp = string_of_exp ta in
    function
    |  GuardLeq(v,exp) ->
      sprintf "%s <= %s" (string_of_exp v)(string_of_exp exp)
    | GuardLess(v,exp) ->
      sprintf "%s < %s" (string_of_exp v)(string_of_exp exp)
    | GuardGeq(v,exp)->
      sprintf "%s >= %s" (string_of_exp v)(string_of_exp exp)
    | GuardGreater(v,exp)->
      sprintf "%s > %s" (string_of_exp v) (string_of_exp exp)
    | GuardEqual(v,exp)->
      sprintf "%s == %s" (string_of_exp v) (string_of_exp exp)
337 338
    | GuardNeq(v,exp)->
      sprintf "%s != %s" (string_of_exp v) (string_of_exp exp)
mcolange's avatar
mcolange committed
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353


  let xml_string_of_atomic_guard ta = 
    let string_of_exp = string_of_exp ta in       
    function
    |  GuardLeq(v,exp) ->
      sprintf "%s &lt;= %s" (string_of_exp v)(string_of_exp exp)
    | GuardLess(v,exp) ->
      sprintf "%s &lt; %s" (string_of_exp v)(string_of_exp exp)
    | GuardGeq(v,exp)->
      sprintf "%s &gt;= %s" (string_of_exp v)(string_of_exp exp)
    | GuardGreater(v,exp)->
      sprintf "%s &gt; %s" (string_of_exp v) (string_of_exp exp)
    | GuardEqual(v,exp)->
      sprintf "%s == %s" (string_of_exp v) (string_of_exp exp)
354 355
    | GuardNeq(v,exp)->
      sprintf "%s != %s" (string_of_exp v) (string_of_exp exp)
mcolange's avatar
mcolange committed
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377


  let rec string_of_guard ta = 
    function
    | [] -> ""
    | [x] -> string_of_atomic_guard ta x
    | x :: y :: l -> 
      ((string_of_atomic_guard ta x) ^ " && ")
      ^ (string_of_guard ta (y::l))


  let rec xml_string_of_guard ta =
    function
    | [] -> ""
    | [x] -> xml_string_of_atomic_guard ta x
    | x :: y :: l -> 
      ((xml_string_of_atomic_guard ta x) ^ " &amp;&amp; ")
      ^ (xml_string_of_guard ta (y::l))


  let string_of_updates ta ups = 
    let ups_str = 
378 379 380 381 382 383
      List.map (fun (var,exp) -> 
        let lhsname = match var with
          | ClockRef(c) -> VarContext.var_of_index ta.clocks c
          | VarRef(v) -> VarContext.var_of_index ta.vars v
        in
        sprintf "%s = %s" lhsname (string_of_exp ta exp)) ups in
mcolange's avatar
mcolange committed
384 385 386 387 388 389 390 391 392 393
    String.concat ", " ups_str

    
  let string_of_state ta state =
    let out = Buffer.create 50 in 
    Array.iter (fun loc -> Buffer.add_string out loc.locName;
                 Buffer.add_string out " ") state.stateLocs;
    if (Array.length state.stateVars > 0 ) then (
      Buffer.add_string out "\n";
      Array.iteri (fun i v ->
394
          let name = VarContext.var_of_index ta.vars i in
mcolange's avatar
mcolange committed
395 396 397 398 399 400 401
          Buffer.add_string out (sprintf "%s = %d, " name v)) state.stateVars;
    );
    (*    Buffer.add_string out "\n";*)
    Buffer.contents out

    
  let string_of_edge ta edge = 
402
    let proc = ta.procs.(edge.edgeProc) in
403 404 405 406 407
    let print_chanref = function
      | ChanId(c) -> string_of_int c
      | ChanArray(aid,indices) ->
          List.fold_left (fun s x -> sprintf "%s[%s]" s (string_of_exp ta x)) (string_of_int aid) indices
    in
mcolange's avatar
mcolange committed
408 409
    let sync = match edge.edgeSync with 
      |None -> ""
410 411
      |Some(SendChan(c)) -> (print_chanref c)^"!"
      |Some(RecvChan(c)) -> (print_chanref c)^"?"
mcolange's avatar
mcolange committed
412 413 414
    in
    let discguardstr = string_of_guard ta edge.edgeDiscGuard in
    let guardstr = string_of_guard ta edge.edgeGuard in
415
    sprintf "%s%s -> %s \tDiscGuard: %s \tGuard: %s \tUpdates:%s \tSync:%s" 
mcolange's avatar
mcolange committed
416 417 418 419 420
      (if (edge.edgeControllable) then "" else "[E]")
      (proc.procLocations.(edge.edgeSource).locName)
      (proc.procLocations.(edge.edgeTarget).locName)
      discguardstr
      guardstr
421
      (string_of_updates ta edge.edgeUpdates)
mcolange's avatar
mcolange committed
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
      sync

  
  let string_of_location ta loc =
    let out = Buffer.create 128 in
    let utter = Buffer.add_string out in
    utter (sprintf "Location %d: %s "loc.locId loc.locName);
    if (loc.locCommitted) then
      utter "committed ";
    utter (string_of_guard ta loc.locInvar);
    utter "\n";
    utter (sprintf "Has %d edges:\n" (List.length loc.locEdges));
    let edgestrlist = (List.map (string_of_edge ta) loc.locEdges) in
    utter (String.concat "\n" edgestrlist);
    utter "\n";
    Buffer.contents out


  let string_of_process ta proc = 
    let out = Buffer.create 1000 in
    let utter = Buffer.add_string out in
    utter (sprintf "Process(%d): %s\n"  proc.procId proc.procName);
    Array.iter (fun loc -> utter (string_of_location ta loc)) proc.procLocations;
    utter (sprintf "Initial location id: %d\n" proc.procInitLoc);
    Buffer.contents out


  let string_of_transition ta tr =
    let buf = Buffer.create 128 in
    let out = Buffer.add_string buf in
452
    let proc_name e = ta.procs.(e.edgeProc).procName in
mcolange's avatar
mcolange committed
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    match tr with 
      InternalTrans(state,e) ->
      out (sprintf "From global state: %s\n" (string_of_state ta state));
      out (string_of_edge ta e);
      Buffer.contents buf
    | SyncTrans(state,e1,e2) ->
      out (sprintf "Synchronized Transition btw Processes: %s - %s\n Source: %s\n" (proc_name e1) (proc_name e2)
             (string_of_state ta state));
      out "Sync:\n";
      out (string_of_edge ta e1);
      out "\n";
      out (string_of_edge ta e2);
      Buffer.contents buf


  (********** OTHER AUXILIARY FUNCTIONS **********)
    
Maximilien Colange's avatar
Maximilien Colange committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  (* evaluate expression *)
  (* output is either Constant(_) or Clock(_)
   *)
  let rec eval_exp ta vars = function
    | Constant c -> Constant c
    | ConstVariable(id) ->
        if ( id < 0 || id >= Array.length ta.constvalues ) then
          failwith (sprintf "Const var index %d out of bounds (%d)" id (Array.length ta.constvalues));
        Constant ta.constvalues.(id)
    | Variable(id) -> 
        if ( id < 0 || id >= Array.length vars ) then
          failwith (sprintf "Var index %d out of bounds (%d)" id (Array.length vars));
        Constant vars.(id)
    | Clock(c) -> Clock(c)
    | ClockArray(arrayId, l) ->
        let indices = List.map (fun x -> eval_disc_exp ta vars x) l in
        let cellindex = VarContext.index_of_cell ta.clocks arrayId indices in
        Clock(cellindex)
    | Array(arrayId, l) -> 
        let indices = List.map (fun x -> eval_disc_exp ta vars x) l in
        let cellindex = VarContext.index_of_cell ta.vars arrayId indices in
        eval_exp ta vars (Variable cellindex)
    | ConstArray(arrayId, l) ->
        let indices = List.map (fun x -> eval_disc_exp ta vars x) l in
        let cellIndex = VarContext.index_of_cell ta.constants arrayId indices in
        eval_exp ta vars (ConstVariable cellIndex)
    | Product(e1,e2) -> Constant ((eval_disc_exp ta vars e1) * (eval_disc_exp ta vars e2))
    | Sum(e1,e2) -> Constant ((eval_disc_exp ta vars e1) + (eval_disc_exp ta vars e2))
    | Division(e1,e2) -> Constant ((eval_disc_exp ta vars e1) / (eval_disc_exp ta vars e2))
    | Substraction(e1,e2) -> Constant ((eval_disc_exp ta vars e1) - (eval_disc_exp ta vars e2))
  (* same as above, but fails if it encounters a clock *)
  and eval_disc_exp ta vars exp =
    match (eval_exp ta vars exp) with
      | Constant c -> c
      | _ -> failwith ("Unevaluable discrete expression" ^ (string_of_exp ta exp))
mcolange's avatar
mcolange committed
505 506
       
  let source_location_of_edge ta edge =
507
    ta.procs.(edge.edgeProc).procLocations.(edge.edgeSource)
mcolange's avatar
mcolange committed
508

Maximilien Colange's avatar
Maximilien Colange committed
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  (* evaluate the discrete part of a guard
   * the result contains only clocks and constants (no clock array, no expression)
   *)
  let eval_ag ta state ag =
    let eval = eval_exp ta state.stateVars in
    match ag with
      | GuardLeq(a,b) -> GuardLeq(eval a, eval b)
      | GuardLess(a,b) -> GuardLess(eval a, eval b)
      | GuardEqual(a,b) -> GuardEqual(eval a, eval b)
      | GuardNeq(a,b) -> GuardNeq(eval a, eval b)
      | GuardGeq(a,b) -> GuardGeq(eval a, eval b)
      | GuardGreater(a,b) -> GuardGreater(eval a, eval b)

  (* completely evaluate a discrete guard to true or false.
   * fails if it encounters a clock *)
  let eval_disc_guard ta state =
    List.for_all (fun x ->
      match eval_ag ta state x with
        | GuardLeq(Constant(a),Constant(b)) -> a <= b
        | GuardLess(Constant(a),Constant(b)) -> a < b
        | GuardEqual(Constant(a),Constant(b)) -> a = b
        | GuardNeq(Constant(a),Constant(b)) -> a <> b
        | GuardGeq(Constant(a),Constant(b)) -> a >= b
        | GuardGreater(Constant(a),Constant(b)) -> a > b
        | _ -> failwith "Unevaluable discrete guard")
    
  (* Assumes the input guard has only Clock(_) comp Constant(_)
   * [i.e. no ClockArray and no other expression than Constant]
   *)
mcolange's avatar
mcolange committed
538 539
  let _guard_to_dbm ta state g =
    let nclocks = VarContext.size ta.clocks in
540 541
    let dbm = UDbm.Dbm.create nclocks in
    UDbm.Dbm.set_init dbm;
mcolange's avatar
mcolange committed
542
    let aux = function
Maximilien Colange's avatar
Maximilien Colange committed
543
      | GuardLeq(Clock(c), Constant(k)) ->
544
          UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_WEAK))
Maximilien Colange's avatar
Maximilien Colange committed
545
      | GuardLess(Clock(c), Constant(k)) ->
546
        UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_STRICT))
Maximilien Colange's avatar
Maximilien Colange committed
547
      | GuardGeq(Clock(c), Constant(k)) ->
548
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_WEAK))
Maximilien Colange's avatar
Maximilien Colange committed
549
      | GuardGreater(Clock(c), Constant(k)) ->
550
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_STRICT))
Maximilien Colange's avatar
Maximilien Colange committed
551
      | GuardEqual(Clock(c), Constant(k)) ->
552 553
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_WEAK));
        UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_WEAK))
mcolange's avatar
mcolange committed
554 555 556 557 558 559 560
      | _ as e -> failwith (sprintf "Bad Guard: %s" (string_of_guard ta [e]))
    in
    List.iter aux g;
    dbm


  let is_committed state =
561 562 563 564 565 566
    let rec aux ar n =
      if (ar.(n).locCommitted) then true
      else if (n > 0) then
        aux ar (n-1)
      else false
    in aux state.stateLocs (Array.length state.stateLocs - 1)
mcolange's avatar
mcolange committed
567 568 569 570 571 572

  
  let _copy_state state = 
    { stateVars = Array.copy state.stateVars;
      stateLocs = Array.copy state.stateLocs}

573 574
  (** Apply discrete update of edge to state, result written in state'
   *  Along the way, instantiate clock updates and return them *)
mcolange's avatar
mcolange committed
575
  let _apply_edge ta state edge state' =
576
    let result = ref [] in
577
    state'.stateLocs.(edge.edgeProc) <- ta.procs.(edge.edgeProc).procLocations.(edge.edgeTarget);
578 579 580
    List.iter (fun (lhs,e) ->
      match lhs with
        | VarRef(id) -> state'.stateVars.(id) <- eval_disc_exp ta state'.stateVars e
581 582 583
        | ClockRef(id) -> result := !result @ [(id, eval_disc_exp ta state'.stateVars e)]
        | ArrayRef(id,ilist) ->
            let indices = List.map (fun x -> eval_disc_exp ta state'.stateVars x) ilist in
584
            let cellId = VarContext.index_of_cell ta.vars id indices in
585 586 587 588 589
            state'.stateVars.(cellId) <- eval_disc_exp ta state'.stateVars e
        | ClockArrayRef(id,ilist) ->
            let indices = List.map (fun x -> eval_disc_exp ta state'.stateVars x) ilist in
            let cellId = VarContext.index_of_cell ta.clocks id indices in
            result := !result @ [(cellId, eval_disc_exp ta state'.stateVars e)])
590 591
    edge.edgeUpdates;
    !result
mcolange's avatar
mcolange committed
592 593 594 595 596 597 598 599 600


  (********** TIMED_AUTOMATON interface **********)
  let clocks ta = ta.clocks

  let initial_discrete_state ta = ta.init

  let invariant_of_discrete_state ta state =
    try
601
      DSHashtbl.find ta.invars_tbl state
mcolange's avatar
mcolange committed
602 603
    with Not_found ->
      let glob_inv =
Maximilien Colange's avatar
Maximilien Colange committed
604
        Array.fold_left (fun acc loc -> (List.map (eval_ag ta state) loc.locInvar) @ acc ) [] state.stateLocs in
mcolange's avatar
mcolange committed
605
      let inv = _guard_to_dbm ta state.stateVars glob_inv in
606
      DSHashtbl.add ta.invars_tbl state inv;
mcolange's avatar
mcolange committed
607 608 609
      inv
       | _ as e -> raise e

Maximilien Colange's avatar
Maximilien Colange committed
610
  let rate_of_state ta state =
611
    Costs.get_rate (Array.map (fun loc -> loc.locRate) state.stateLocs) (eval_disc_exp ta state.stateVars)
Maximilien Colange's avatar
Maximilien Colange committed
612

mcolange's avatar
mcolange committed
613 614 615
  let initial_extended_state ta =
    let dim = (VarContext.size (clocks ta)) in
    let z = Dbm.create dim in
616 617
    Dbm.set_zero z;
    (ta.init, z)
618 619 620 621 622
   
  let eval_chan ta state = function
    | ChanId(c) -> ChanId(c)
    | ChanArray(arrayId, l) ->
      let indices = List.map (fun x -> eval_disc_exp ta state.stateVars x) l in
623
      let cellindex = VarContext.index_of_cell ta.channels arrayId indices in
624 625
      ChanId (cellindex)

626
  let _transitions_from ta state = 
mcolange's avatar
mcolange committed
627 628 629 630 631 632 633 634 635 636 637 638 639 640
    let committed = is_committed state in
    let transq = Queue.create () in
    (* Queue of synchronizing edges *)
    let rchan = Queue.create () in
    let schan = Queue.create () in
    let nproc = Array.length ta.procs in
    for i = 0 to nproc - 1 do
      let loc = state.stateLocs.(i) in
      let add_single = not committed || loc.locCommitted in
      List.iter
        (fun edge ->
          if (eval_disc_guard ta state edge.edgeDiscGuard) then
            (match edge.edgeSync with
              | Some (SendChan(c)) ->
641
                  Queue.add (eval_chan ta state c, edge) schan
mcolange's avatar
mcolange committed
642
              | Some (RecvChan(c)) ->
643
                  Queue.add (eval_chan ta state c, edge) rchan
mcolange's avatar
mcolange committed
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
              | None ->
                  if (add_single) then
                    Queue.add (InternalTrans (state, edge)) transq
            )
        ) loc.locEdges
    done;
    Queue.iter
      (fun (rname, redge) ->
        Queue.iter
          (fun (sname, sedge) ->
            (* Sync if same channels are used by different processes *)
            if (rname = sname && redge.edgeProc <> sedge.edgeProc) then (
              (* and if state not committed or one of the participating states is *)
              let sloc = source_location_of_edge ta sedge in
              let rloc = source_location_of_edge ta redge in
              if (not committed || sloc.locCommitted || rloc.locCommitted) then
                Queue.add (SyncTrans (state, redge, sedge)) transq
            )
          ) schan
      ) rchan;
    Queue.fold (fun l tr -> tr :: l) [] transq

666 667
  let guard_of_transition ta tr = 
    let to_succinct = function
Maximilien Colange's avatar
Maximilien Colange committed
668 669
      |InternalTrans(s,e) -> (s.stateVars,List.map (eval_ag ta s) e.edgeGuard)
      |SyncTrans(s,e1,e2) -> (s.stateVars,List.map (eval_ag ta s) (e1.edgeGuard @ e2.edgeGuard))
670 671 672 673 674 675 676 677 678 679
    in
    let (vars,succ_guard) as str = to_succinct tr in
    try 
      GuardHashtbl.find ta.guards_tbl str
    with Not_found ->
      let g = _guard_to_dbm ta vars succ_guard in
      GuardHashtbl.add ta.guards_tbl str g;
      g
      | _ as e -> raise e

Maximilien Colange's avatar
Maximilien Colange committed
680
  let _transition_fields ta = function
mcolange's avatar
mcolange committed
681 682
    | InternalTrans(state, e) ->
        let state' = _copy_state state in
683
        let resets = _apply_edge ta state e state' in
mcolange's avatar
mcolange committed
684
        (state,
Maximilien Colange's avatar
Maximilien Colange committed
685
         List.map (eval_ag ta state) e.edgeGuard,
686
         resets,
mcolange's avatar
mcolange committed
687 688 689
         state')
    | SyncTrans(state, e1, e2) ->
        let state' = _copy_state state in
690 691
        let resets1 = _apply_edge ta state e1 state' in
        let resets2 = _apply_edge ta state e2 state' in
Maximilien Colange's avatar
Maximilien Colange committed
692 693 694 695 696
        (state, List.map (eval_ag ta state) (e1.edgeGuard @ e2.edgeGuard), resets1 @ resets2, state')
  
  let transition_fields ta tr = 
    let (s,g,r,s') = _transition_fields ta tr in
    (s,_guard_to_dbm ta s.stateVars g,r,s')
mcolange's avatar
mcolange committed
697

698 699 700
  let transitions_from ta state =
    List.map (fun tr -> transition_fields ta tr) (_transitions_from ta state)

701 702 703 704 705 706 707 708 709 710
  let transition_to_string ta (source, dbm, ulist, target) =
    let res = List.find
      (fun trans ->
        let (_, d, u, t) = transition_fields ta trans in
        is_state_equal target t && ulist = u && UDbm.Dbm.equal dbm d)
      (_transitions_from ta source)
    in
    string_of_transition ta res


mcolange's avatar
mcolange committed
711
  let is_urgent_or_committed ta state =
712 713 714 715 716 717
    let rec aux ar n =
      if (ar.(n).locCommitted || ar.(n).locUrgent) then true
      else if (n > 0) then
        aux ar (n-1)
      else false
    in aux state.stateLocs (Array.length state.stateLocs - 1)
mcolange's avatar
mcolange committed
718 719

  let is_target ta state =
720 721 722 723 724 725
    let rec eval_query = function
      | EmptyQuery -> true
      | QueryAnd(l,r) -> (eval_query l) && (eval_query r)
      | QueryOr(l,r) -> (eval_query l) || (eval_query r)
      | Location(procId,locId) -> state.stateLocs.(procId).locId = locId
      | Atomic(ag) -> eval_disc_guard ta state [ag]
mcolange's avatar
mcolange committed
726
    in
727
    eval_query ta.query
mcolange's avatar
mcolange committed
728

mcolange's avatar
mcolange committed
729 730
  let lu_bounds ta state =
    try
731
      DSHashtbl.find ta.lubounds_tbl_c state
mcolange's avatar
mcolange committed
732 733
    with Not_found ->
      let nclocks = VarContext.size ta.clocks in
734 735 736 737
      let lower,upper = DSHashtbl.find ta.lubounds_tbl state in
      let lar,uar = (Udbml.Carray.to_c lower nclocks, Udbml.Carray.to_c upper nclocks) in
      DSHashtbl.add ta.lubounds_tbl_c state (lar,uar);
      (lar,uar)
mcolange's avatar
mcolange committed
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752
  let m_bounds ta state =
    try
      DSHashtbl.find ta.mbounds_tbl_c state
    with Not_found ->
      let nclocks = VarContext.size ta.clocks in
      let lower,upper = DSHashtbl.find ta.lubounds_tbl state in
      let mbound = Array.make nclocks 0 in
      for cl = 0 to nclocks-1 do
        mbound.(cl) <- max lower.(cl) upper.(cl)
      done;
      let res = Udbml.Carray.to_c mbound nclocks in
      DSHashtbl.add ta.mbounds_tbl_c state res;
      res

mcolange's avatar
mcolange committed
753
  let global_m_bounds ta =
mcolange's avatar
mcolange committed
754 755 756
    if (ta.global_mbounds.(0) <> 0) then (
      let nclocks = VarContext.size (clocks ta) in
      ta.global_mbounds.(0) <- 0;
757 758 759 760 761 762 763 764
      DSHashtbl.iter (fun _ -> fun (lbound,ubound) ->
        for cl = 0 to nclocks-1 do
          ta.global_mbounds.(cl) <- max ta.global_mbounds.(cl) lbound.(cl);
          ta.global_mbounds.(cl) <- max ta.global_mbounds.(cl) ubound.(cl)
        done) ta.lubounds_tbl;
      Array.iteri (fun cl m ->
        if (m < 0) then
          printf "clock %d (of bound %d) is never read!?\n" cl m) ta.global_mbounds
mcolange's avatar
mcolange committed
765 766
    );
    ta.global_mbounds
mcolange's avatar
mcolange committed
767 768 769 770 771 772 773

  let global_m_invariant ta =
    let marray = global_m_bounds ta in
    let inv_guard = ref [] in
    for i = 0 to (Array.length marray)-1 do
      inv_guard := (GuardLeq (Clock i, Constant marray.(i))) :: !inv_guard
    done;
Maximilien Colange's avatar
Maximilien Colange committed
774
    (* no need to call eval_ag, the guard has only Clock and Constant *)
mcolange's avatar
mcolange committed
775 776
    _guard_to_dbm ta ta.init.stateVars !inv_guard
    
mcolange's avatar
mcolange committed
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  (** print functions *)
  let print_discrete_state chan ta state =
    fprintf chan "%s\n" (string_of_state ta state)
  
  let print_transition chan ta trans = 
    fprintf chan "%s\n" (string_of_transition ta trans)

  let print_timed_automaton chan ta =
    fprintf chan "Timed automaton with %d clocks and %d processes\n"
      (VarContext.size ta.clocks) (Array.length ta.procs);
    Array.iter (fun proc -> fprintf chan "%s\n-----\n" (string_of_process ta proc)) ta.procs
 
  let print_extended_state chan ta (state,dbm) =
    fprintf chan "%s " (string_of_state ta state);
    fprintf chan "%s " (Dbm.to_string dbm)

  (********** LOADING FUNCTIONS **********)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
  (* propagate the clocks given in input, and return a set of clocks still
   * worth to propagate
   *)
  let propagate lparent uparent lson uson updates clocks =
    let res = ref ClockSet.empty in
    (* for every element of clocks, check whether to propagate *)
    ClockSet.iter (fun cl ->
      (* a clock does not propagate past an update *)
      if (List.for_all (fun (i,_) -> i <> cl) updates) then
        begin
          (* a clock is worth propagating later on if it propagates here *)
          if (lparent.(cl) < lson.(cl)) then (
            lparent.(cl) <- lson.(cl);
            res := ClockSet.add cl !res
          );
          if (uparent.(cl) < uson.(cl)) then (
            uparent.(cl) <- uson.(cl);
            res := ClockSet.add cl !res
          )
        end) clocks;
    !res

  exception Early_stop

  (** To compute LU (and M) bounds, we first explore the whole discrete
   *  state space.
   *  At each discrete state s, each clock c is given the largest constant
   *  against which it is compared in s.
   *  Then, larger bounds propagate backwards, but not CROSS resets.
   *  The best way to do this (with the retropropagation) is a DFS of the
   *  discrete state space
   *)
  (* TODO by adapting the walk order, the M bounds could be computed on the fly,
   *      while the real state space is being discovered
   *)
  let build_lu ta =
mcolange's avatar
mcolange committed
830
    let nclocks = VarContext.size ta.clocks in
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    let trace = Stack.create () in
    (* trace is a stack of discrete_state * (transition list) *)
    (* to get a list of transitions from a discrete state, use _transitions_from *)
    let init = initial_discrete_state ta in
    let init_edges = _transitions_from ta init in
    Stack.push (init, init_edges) trace;
    let ltmp, utmp = Array.make nclocks (-Dbm.infty), Array.make nclocks (-Dbm.infty) in
    DSHashtbl.add ta.lubounds_tbl init (ltmp,utmp);
    while (not (Stack.is_empty trace)) do
      let (current, edges) = Stack.top trace in
      match edges with
        | [] -> begin
            (* pop the stack *)
            let _ = Stack.pop trace in
            (* we are done with this state, retropropagation *)
            let son = ref current in
            let clocks = ref ClockSet.empty in
            for cl = 1 to nclocks-1 do clocks := ClockSet.add cl !clocks done;
            (* Do the bound retropropagation *)
            begin
            try
              Stack.iter (fun (parent, edge :: _) ->
                if (ClockSet.is_empty !clocks) then
                  raise Early_stop;
                let lson,uson = DSHashtbl.find ta.lubounds_tbl !son in
                let lparent,uparent = DSHashtbl.find ta.lubounds_tbl parent in
                let (_,_,updates,_) = _transition_fields ta edge in
                clocks := propagate lparent uparent lson uson updates !clocks;
                son := parent
              ) trace;
            with
              | Early_stop -> ()
            end;
            (* get the parent state, its first edge is the one between parent and current *)
            if (not (Stack.is_empty trace)) then (
              let (parent, _::l) = Stack.pop trace in
              (* repush the parent and its remaining edges *)
              Stack.push (parent, l) trace;
            )
        end
        | edge :: rest -> begin
          let (_,guard,updates,succ) = _transition_fields ta edge in
          let (current_lower,current_upper) = DSHashtbl.find ta.lubounds_tbl current in
874
          (* evaluate accesses to clock arrays, if any *)
Maximilien Colange's avatar
Maximilien Colange committed
875
          (* TODO refactor: the guard should already be evaluated by _transition_fields *)
876 877 878 879 880 881 882 883 884 885 886 887 888
          let evalClock = fun (ClockArray(i,ilist)) ->
            let indices = List.map (fun e -> eval_disc_exp ta current.stateVars e) ilist in
            let cid = VarContext.index_of_cell ta.clocks i indices in
            Clock(cid)
          in
          let guard_eval = List.map (function
            | GuardLeq(ClockArray(_,_) as ca,rhs) -> GuardLeq(evalClock ca,rhs)
            | GuardLess(ClockArray(_,_) as ca,rhs) -> GuardLess(evalClock ca,rhs)
            | GuardEqual(ClockArray(_,_) as ca,rhs) -> GuardEqual(evalClock ca,rhs)
            | GuardGeq(ClockArray(_,_) as ca,rhs) -> GuardGeq(evalClock ca,rhs)
            | GuardGreater(ClockArray(_,_) as ca,rhs) -> GuardGeq(evalClock ca,rhs)
            | _ as x -> x) guard
          in
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
          (* update the bounds of current thanks to current transition *)
          List.iter (function
            | GuardLeq(Clock(cl),e)
            | GuardLess(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_upper.(cl) <- max current_upper.(cl) r
            | GuardEqual(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_upper.(cl) <- max current_upper.(cl) r;
                current_lower.(cl) <- max current_lower.(cl) r
            | GuardGeq(Clock(cl),e)
            | GuardGreater(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_lower.(cl) <- max current_lower.(cl) r
            | _ -> failwith "cannot compute LU bounds, guard not in normal form")
904
          guard_eval;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

          (* now take care of the succ *)
          if (DSHashtbl.mem ta.lubounds_tbl succ) then
            (* if already discovered, push it on the stack with an empty list of
             * edges in order to have the correct retropropagation *)
            begin
              Stack.push (succ, []) trace
            end
          else
            (* if new, add it to the hashtable and push it on the stack *)
            begin
              let ltmp, utmp = Array.make nclocks (-Dbm.infty), Array.make nclocks (-Dbm.infty) in
              DSHashtbl.add ta.lubounds_tbl succ (ltmp,utmp);
              let succ_edges = _transitions_from ta succ in
              Stack.push (succ, succ_edges) trace
            end
        end
922 923 924 925 926 927
    done;
    DSHashtbl.iter (fun _ -> fun (lbound,ubound) ->
      for cl=0 to nclocks-1 do
        if (lbound.(cl) < 0) then lbound.(cl) <- 0;
        if (ubound.(cl) < 0) then ubound.(cl) <- 0
      done) ta.lubounds_tbl
928 929

  (** Constructs a timed_automaton from the C data structure produced by the
930 931 932 933 934 935 936 937 938
   *  library utap.
   *  TODO compared to previous version, this lacks:
     *  parameterization by guard_of_transition
     *  parameterization by invariant_of_discrete_state
     *  scaling
     *  enlarging
   *  This hinders the ability to instantiate to other kinds of automata,
   *  such as enlarged automata
   *)
939
  external utap_from_file : string -> string -> timed_automaton = "xta_from_xmlfile";;
940

941
  let build_ta_from_processes channels clockcont varcont var_init_values constcont constvalues procs query =
942 943 944 945 946 947 948
    (* Fill in the edgeProc and locProc fields in all locations and edges *)
    Array.iter (fun proc -> 
        Array.iter (fun loc -> 
            loc.locName <- proc.procName ^ "." ^ loc.locName;
          ) proc.procLocations
      )
      procs;
949 950 951 952 953 954
    let procNames = Array.map (fun p -> p.procName) procs in
    (* Prefix all names with the scope process names *)
    let clocks = ScopeVarContext.to_vc clockcont procNames in
    let vars = ScopeVarContext.to_vc varcont procNames in
    let constants = ScopeVarContext.to_vc constcont procNames in

955 956 957 958 959 960
    (* build the array of const values *)
    let nconst = (Hashtbl.length constvalues) in
    let const_val = Array.make nconst 0 in
    for i = 0 to nconst-1 do
      const_val.(i) <- Hashtbl.find constvalues i;
    done;
961
    let nvars = (Hashtbl.length var_init_values) in
mcolange's avatar
mcolange committed
962
    let initLocs = Array.map (fun proc -> proc.procLocations.(proc.procInitLoc)) procs in
963
    let initVars = Array.make nvars 0 in
mcolange's avatar
mcolange committed
964 965 966 967 968 969 970
    for i = 0 to nvars-1 do
      initVars.(i) <- Hashtbl.find var_init_values i;
    done;
    let ta = {
      procs = procs;
      clocks = clocks;
      vars = vars;
971 972
      constants = constants;
      constvalues = const_val;
973
      channels = channels;
mcolange's avatar
mcolange committed
974
      init = {stateLocs = initLocs; stateVars = initVars};
975
      query = query;
976 977
      lubounds_tbl = DSHashtbl.create 1024;
      lubounds_tbl_c = DSHashtbl.create 1024;
978
      mbounds_tbl_c = DSHashtbl.create 1024;
979
      guards_tbl = GuardHashtbl.create 1024;
980
      invars_tbl = DSHashtbl.create 1024;
mcolange's avatar
mcolange committed
981
      global_mbounds = Array.make (VarContext.size clocks) (-Dbm.infty)
mcolange's avatar
mcolange committed
982
    }
983 984
    in
    build_lu ta;
mcolange's avatar
mcolange committed
985
    ta
986
    
987
  let make_ta tafile qfile =
988 989 990
    (** Variable and clock contexts have initially keys of type (p,name)
     * where p is process option (None for global variables),
     * and name the name of the variable. *)
991 992 993 994 995 996 997 998 999 1000
    (* Clocks *)
    let clockcont = ScopeVarContext.create () in
    (* Variables, with initial values *)
    let varcont = ScopeVarContext.create () in
    let var_init_values = Hashtbl.create 16 in
    (* Constants, with initial values *)
    let constcont = ScopeVarContext.create () in
    let const_values = Hashtbl.create 16 in

    (* Register C callbacks to build expressions *)
1001 1002
    Callback.register "cb_expression_constant" cb_expression_constant;
    Callback.register "cb_expression_variable"
1003 1004
      (cb_expression_variable constcont const_values varcont);
    Callback.register "cb_expression_clock" (cb_expression_clock clockcont);
1005 1006 1007 1008
    Callback.register "cb_expression_sum" cb_expression_sum;
    Callback.register "cb_expression_product" cb_expression_product;
    Callback.register "cb_expression_substraction" cb_expression_substraction;
    Callback.register "cb_expression_division" cb_expression_division;
1009
    Callback.register "cb_expression_array"
1010
      (cb_expression_array varcont constcont clockcont);
1011

1012 1013 1014
    (* C callbacks for arrays of integers *)
    let cb_reg_array_name procref arrayName =
      ScopeVarContext.add_array varcont (procref, arrayName)
1015
    in
1016 1017 1018
    Callback.register "cb_register_array_name" cb_reg_array_name;
    let cb_reg_array_cell procref arrayName indices value =
      let cellId = ScopeVarContext.add_cell varcont (procref, arrayName) indices
1019
      in
1020
      Hashtbl.add var_init_values cellId value
1021
    in
1022
    Callback.register "cb_register_array_cell" cb_reg_array_cell;
1023

1024 1025 1026
    (* C callbacks for const arrays of integers *)
    let cb_reg_const_array_name procref arrayName =
      ScopeVarContext.add_array constcont (procref, arrayName)
1027
    in
1028 1029 1030
    Callback.register "cb_register_const_array_name" cb_reg_const_array_name;
    let cb_reg_const_array_cell procref arrayName indices value =
      let cellId = ScopeVarContext.add_cell constcont (procref, arrayName) indices
1031
      in
1032
      Hashtbl.add const_values cellId value
1033
    in
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    Callback.register "cb_register_const_array_cell" cb_reg_const_array_cell;

    (* C callbacks for arrays of clocks *)
    let cb_reg_clock_array procref arrayName =
      ScopeVarContext.add_array clockcont (procref, arrayName)
    in
    Callback.register "cb_register_clock_array_name" cb_reg_clock_array;
    let cb_reg_clock_array_cell procref arrayName indices =
      let _ = ScopeVarContext.add_cell clockcont (procref, arrayName) indices in ()
    in
    Callback.register "cb_register_clock_array_cell" cb_reg_clock_array_cell;
      
1046 1047 1048 1049 1050 1051 1052

    (* C callbacks for channels and arrays of channels *)
    (* Due to the very nature of channels, all channels and arrays of channels
     * should be global, which we assume here.
     * Thus, we directly use a VarContext, not a ScopeVarContext.
     *)
    let chans = VarContext.create () in
1053
    Callback.register "cb_channel_simple" (cb_channel_simple chans);
1054
    Callback.register "cb_channel_array" (cb_channel_array chans);
1055 1056
    (* first argument (reference to scope proc) kept for compatibility *)
    let cb_register_channel_array_name _ arrayName =
1057
      VarContext.add_array chans arrayName
1058 1059
    in
    Callback.register "cb_register_channel_array_name" cb_register_channel_array_name;
1060 1061
    let cb_register_channel_array_cell _ arrayName indices =
      let _ = VarContext.add_cell chans arrayName indices in ()
1062 1063 1064
    in
    Callback.register "cb_register_channel_array_cell" cb_register_channel_array_cell;

1065
    (* C callbacks for constants *)
1066
    let cb_register_constant tmp name value =
1067
      let varid = ScopeVarContext.add constcont (tmp, name) in
1068 1069 1070
      Hashtbl.add const_values varid value
    in
    Callback.register "cb_register_constant" cb_register_constant;
1071
    (* C callbacks for variables *)
1072
    let cb_register_variable tmp name value =
1073
      let varid = ScopeVarContext.add varcont (tmp, name) in
1074 1075 1076
      Hashtbl.add var_init_values varid value
    in
    Callback.register "cb_register_variable" cb_register_variable;
1077 1078 1079
    (* C callback for clocks *)
    let cb_register_clock tmp name =
      let _ = ScopeVarContext.add clockcont (tmp, name) in ()
1080 1081
    in
    Callback.register "cb_register_clock" cb_register_clock;
1082 1083 1084 1085 1086 1087
    (* C callbacks for channels *)
    (* first argument (reference to scope proc) kept for compatibility *)
    let cb_register_channel _ name =
      let _ = VarContext.add chans name in ()
    in
    Callback.register "cb_register_channel" cb_register_channel;
1088 1089 1090

    let rec evaluate_expression = function
      | Constant(c) -> c
1091 1092
      | Clock(_) | ClockArray(_,_) -> failwith "there should not be clocks in evaluated expressions"
      | Array(_,_) | ConstArray(_,_) -> failwith "there should not be array accesses in evaluated expressions"
1093
      | Variable(i) -> Hashtbl.find var_init_values i
1094
      | ConstVariable(i) -> Hashtbl.find const_values i
1095 1096 1097 1098 1099 1100 1101 1102 1103
      | Sum(a,b) -> (evaluate_expression a) + (evaluate_expression b)
      | Product(a,b) -> (evaluate_expression a) * (evaluate_expression b)
      | Substraction(a,b) -> (evaluate_expression a) - (evaluate_expression b)
      | Division(a,b) -> (evaluate_expression a) / (evaluate_expression b)
    in
    Callback.register "cb_evaluate_expr" evaluate_expression;
    (** Get discrete guard from mixed guard *)
    let filter_disc_guard g = 
      let rec filt_exp = function
1104
        | Clock(_) | ClockArray(_,_) -> false
1105 1106 1107 1108
        | Sum(x,y) -> (filt_exp x) && (filt_exp y)
        | Product(x,y) -> (filt_exp x) && (filt_exp y)
        | Substraction(x,y) -> (filt_exp x) && (filt_exp y)
        | Division(x,y) -> (filt_exp x) && (filt_exp y)
1109
        | Array(_, l) -> List.for_all (fun x -> filt_exp x) l
1110 1111 1112 1113 1114 1115 1116 1117
        | _ -> true
      in
      let filt_ag = function
        | GuardLess(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardLeq(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardGreater(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardGeq(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardEqual(x,y) -> (filt_exp x) && (filt_exp y)
1118
        | GuardNeq(x,y) -> (filt_exp x) && (filt_exp y)
1119 1120 1121 1122 1123 1124
      in
      List.filter filt_ag g
    in
    (** Get clock guard from mixed guard *)
    let filter_clock_guard g = 
      let rec filt_exp = function
1125
        | Clock(_) | ClockArray(_,_) -> true
1126 1127 1128 1129 1130 1131
        | Sum(x,y) -> (filt_exp x) || (filt_exp y)
        | Product(x,y) -> (filt_exp x) || (filt_exp y)
        | Substraction(x,y) -> (filt_exp x) || (filt_exp y)
        | Division(x,y) -> (filt_exp x) || (filt_exp y)
        | Array(_, l) -> List.exists (fun x -> filt_exp x) l
        | _ -> false
1132 1133
      in
      let filt_ag = function
1134 1135 1136 1137 1138 1139
        | GuardLess(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardLeq(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardGreater(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardGeq(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardEqual(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardNeq(x,y) -> (filt_exp x) || (filt_exp y)
1140 1141 1142
      in
      List.filter filt_ag g
    in
1143 1144
    let cb_send_channel chan =
      Some(SendChan(chan))
1145
    in
1146 1147
    let cb_recv_channel chan =
      Some(RecvChan(chan))
1148 1149 1150 1151 1152 1153 1154 1155
    in
    Callback.register "cb_send_channel" cb_send_channel;
    Callback.register "cb_recv_channel" cb_recv_channel;
    let build_edge src dst extGuard extUpdate sync procId control =
      {
        edgeSource = src;
        edgeGuard = filter_clock_guard extGuard;
        edgeDiscGuard = filter_disc_guard extGuard;
1156 1157
        edgeUpdates = List.rev (List.map (function
          | (Clock(x),e) -> ClockRef(x),e
1158
          | (ClockArray(a,l),e) -> ClockArrayRef(a,l),e
1159
          | (Variable(x),e) -> VarRef(x),e
1160
          | (Array(a,l),e) -> ArrayRef(a,l),e
1161 1162
          | _ -> failwith "incorrect LHS for update")
        extUpdate);
1163 1164 1165 1166
        edgeTarget = dst;
        edgeSync = sync;
        edgeProc = procId;
        edgeControllable = control;
1167 1168
        (* TODO currently set to default *)
        edgeCost = Costs.edge_cost_def; 
1169 1170 1171
      }
    in
    Callback.register "cb_build_edge" build_edge;
1172
    let build_location id name committed urgent guard edges procId costRate =
1173 1174 1175 1176 1177 1178 1179 1180
      {
        locId = id;
        locName = name;
        locCommitted = committed;
        locUrgent = urgent;
        locInvar = guard;
        locEdges = edges;
        locProc = procId;
1181
        locRate = costRate;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
      }
    in
    Callback.register "cb_build_location" build_location;
    let build_process name id locations init =
      {
        procName = name;
        procId = id;
        procLocations = locations;
        procInitLoc = init;
      }
    in
    Callback.register "cb_build_process" build_process;
1194
    let build_location_array n = Array.make n (build_location 0 "" false false [] [] 0 Costs.loc_rate_def) in
1195 1196 1197
    Callback.register "cb_build_location_array" build_location_array;
    let build_process_array n = Array.make n (build_process "" 0 (build_location_array 0) 0) in
    Callback.register "cb_build_process_array" build_process_array;
1198
    let build_ta procs query = build_ta_from_processes
1199
      chans clockcont varcont var_init_values constcont const_values procs query in
1200
    Callback.register "cb_build_ta" build_ta;
1201 1202
    let global_var_index varName =
      try
1203
        ScopeVarContext.index_of_var varcont (None,varName)
1204 1205 1206 1207 1208 1209
      with
        | Not_found -> -1
    in
    Callback.register "cb_global_var_index" global_var_index;
    let local_var_index procId varName =
      try
1210
        ScopeVarContext.index_of_var varcont (Some procId,varName)
1211 1212 1213 1214 1215
      with
        | Not_found -> -1
    in
    Callback.register "cb_local_var_index" local_var_index;
    utap_from_file tafile qfile
mcolange's avatar
mcolange committed
1216 1217

  let from_file tafile qfile ?scale:(scale=1) ?enlarge:(enlarge=0) () = 
1218
    let ta = make_ta tafile qfile in
mcolange's avatar
mcolange committed
1219 1220 1221 1222
    ta
  
end