timedAutomaton.ml 49.9 KB
Newer Older
mcolange's avatar
mcolange committed
1
open Common
2
open Batteries.Printf
mcolange's avatar
mcolange committed
3
open Dbm
mcolange's avatar
mcolange committed
4 5 6 7
open Uta

module type TIMED_AUTOMATON =
sig
mcolange's avatar
mcolange committed
8
  module MDbm : BIG_IDBM
9

mcolange's avatar
mcolange committed
10 11 12
  type timed_automaton
  type discrete_state
  type transition
13
  type edge
mcolange's avatar
mcolange committed
14

15 16
  module DS : Hashtbl.HashedType with type t = discrete_state

mcolange's avatar
mcolange committed
17
  val clocks : timed_automaton -> string VarContext.t
18
  val is_state_equal : discrete_state -> discrete_state -> bool
mcolange's avatar
mcolange committed
19 20
  val initial_discrete_state : timed_automaton -> discrete_state
  (* does it belong here? If so, so does type for extended_state... *)
mcolange's avatar
mcolange committed
21
  val initial_extended_state : timed_automaton -> discrete_state * MDbm.Dbm.t
22 23
  val transitions_from : timed_automaton -> discrete_state ->
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state) list
mcolange's avatar
mcolange committed
24
  val transition_fields : timed_automaton -> transition ->
25
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state)
26 27
  val guard_of_transition : timed_automaton -> transition -> UDbm.Dbm.t
  val invariant_of_discrete_state : timed_automaton -> discrete_state -> UDbm.Dbm.t
mcolange's avatar
mcolange committed
28 29
  val is_urgent_or_committed : timed_automaton -> discrete_state -> bool
  val is_target : timed_automaton -> discrete_state -> bool
Maximilien Colange's avatar
Maximilien Colange committed
30
  val rate_of_state : timed_automaton -> discrete_state -> int
mcolange's avatar
mcolange committed
31
  val lu_bounds : timed_automaton -> discrete_state -> Udbml.Carray.t * Udbml.Carray.t
32
  val m_bounds : timed_automaton -> discrete_state -> Udbml.Carray.t
mcolange's avatar
mcolange committed
33 34
  val global_m_bounds : timed_automaton -> int array
  val global_m_invariant : timed_automaton -> UDbm.Dbm.t
mcolange's avatar
mcolange committed
35 36 37 38
  (** print functions *)
  val print_discrete_state  : 'b BatIO.output -> timed_automaton -> discrete_state -> unit
  val print_transition : 'b BatIO.output -> timed_automaton -> transition -> unit
  val print_timed_automaton : 'b BatIO.output -> timed_automaton -> unit
mcolange's avatar
mcolange committed
39
  val print_extended_state : 'b BatIO.output -> timed_automaton -> (discrete_state * MDbm.Dbm.t) -> unit
40 41
  val transition_to_string : timed_automaton ->
    (discrete_state * UDbm.Dbm.t * ((clock_t * int) list) * discrete_state) -> string
mcolange's avatar
mcolange committed
42
  val from_file : string -> string -> ?scale:int -> ?enlarge:int -> unit -> timed_automaton
mcolange's avatar
mcolange committed
43 44
end

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
module MBoundedAutomaton (TA : TIMED_AUTOMATON) =
struct
  include TA

  let bounding_transitions ta state=
    let n = VarContext.size (TA.clocks ta) in
    let m = TA.global_m_bounds ta in
    let rec build_list cl accu =
      if (cl = n) then accu
      else
        let guard = Dbm.UDbm.Dbm.create n in
        Dbm.UDbm.Dbm.set_init guard;
        Dbm.UDbm.Dbm.constrain guard (0, cl, (-m.(cl)-2, Udbml.Basic_types.DBM_WEAK));
        Dbm.UDbm.Dbm.constrain guard (cl, 0, (m.(cl)+2, Udbml.Basic_types.DBM_WEAK));
        assert(not(Dbm.UDbm.Dbm.is_empty guard));
        build_list (cl+1) ((state, guard, [(cl, m.(cl)+1)], state)::accu)
    in 
    build_list 1 []

  let transitions_from ta state =
    List.rev_append (TA.transitions_from ta state) (bounding_transitions ta state)

  let invariant_of_discrete_state ta state =
    let inv = TA.invariant_of_discrete_state ta state in
    let n = VarContext.size (TA.clocks ta) in
    let m = TA.global_m_bounds ta in
    for cl = 0 to n-1 do
      Dbm.UDbm.Dbm.constrain inv (cl, 0, (m.(cl) + 2, Udbml.Basic_types.DBM_WEAK))
    done;
    assert(not(Dbm.UDbm.Dbm.is_empty inv));
    inv
    
end

mcolange's avatar
mcolange committed
79 80 81 82 83 84 85 86
module type TIMED_GAME = 
sig
  include TIMED_AUTOMATON
  
  (* I am not convinced it is the better interface *)
  val is_controllable : timed_automaton -> edge -> bool
end

mcolange's avatar
mcolange committed
87
module GenericUAutomaton (BDbm : BIG_IDBM) =
mcolange's avatar
mcolange committed
88
struct
mcolange's avatar
mcolange committed
89
  module MDbm = BDbm
mcolange's avatar
mcolange committed
90
  module Dbm = BDbm.Dbm
91

mcolange's avatar
mcolange committed
92 93 94
  (** In contrast with Uta.expression used in the parser, the variables here are indexed
   *  by unique integer identifiers.
   *)
95
  include Querybuilder
mcolange's avatar
mcolange committed
96

97 98
  (** Expression factory functions, to be registered as callbacks from C *)
  let cb_expression_constant i = Constant i
99

100
  let cb_expression_array arraycont constarraycont tmp name sons =
101 102 103 104 105 106
    if (VarContext.mem arraycont (Some tmp, name)) then
      let arrayid = VarContext.index_of_var arraycont (Some tmp, name) in
      Array(arrayid, sons)
    else if (VarContext.mem arraycont (None, name)) then
      let arrayid = VarContext.index_of_var arraycont (None, name) in
      Array(arrayid, sons)
107 108 109 110 111 112
    else if (VarContext.mem constarraycont (Some tmp, name)) then
      let arrayid = VarContext.index_of_var constarraycont (Some tmp, name) in
      Array(arrayid, sons)
    else if (VarContext.mem constarraycont (None, name)) then
      let arrayid = VarContext.index_of_var constarraycont (None, name) in
      Array(arrayid, sons)
113 114
    else
      failwith (sprintf "Undefined array <%s>" name)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  
  let cb_expression_variable constcont const_values varcont varref ref_variables tmp name =
    (* is it a local constant? *)
    if (VarContext.mem constcont (Some tmp, name)) then
      let varid = VarContext.index_of_var constcont (Some tmp, name) in
      Constant(Hashtbl.find const_values varid)
    (* is it a global constant? *)
    else if (VarContext.mem constcont (None, name)) then
      let varid = VarContext.index_of_var constcont (None, name) in
      Constant(Hashtbl.find const_values varid)
    (* is it a local variable? *)
    else if (VarContext.mem varcont (Some tmp, name)) then
      let varid = VarContext.index_of_var varcont (Some tmp, name) in
      Variable(varid)
    (* is it a global variable? *)
    else if (VarContext.mem varcont (None, name)) then
      let varid = VarContext.index_of_var varcont (None, name) in
      Variable(varid)
    (* is it a reference to a (global) variable (a template parameter)? *)
    else if (VarContext.mem varref (Some tmp, name)) then
      let refid = VarContext.index_of_var varref (Some tmp, name) in
      let refname = Hashtbl.find ref_variables refid in
      let varid = VarContext.index_of_var varcont (None, refname) in
      Variable(varid)
    else (
      eprintf "Printing final VarContext\n";
      VarContext.iter
        (fun (t,name) ind ->
          let scope = match t with
            | None -> "Global"
            | Some tmp -> sprintf "Local to process # %d" tmp
          in
          eprintf "\t%d <%s> : %s\n" ind name scope
        ) varcont;
      printf "%b\n" (VarContext.mem varcont (Some tmp, name));
      failwith (sprintf "Undefined variable <%s>" name)
    )

  let cb_expression_clock clockcont clockref ref_clocks tmp name =
    (* is it a local clock? *)
    if (VarContext.mem clockcont (Some tmp, name) ) then
      let varid = VarContext.index_of_var clockcont (Some tmp,name) in
      Clock(varid)
    (* is it a global clock? *)
    else if (VarContext.mem clockcont (None, name) ) then
      let varid = VarContext.index_of_var clockcont (None,name) in
      Clock(varid)
    (* is it a reference to a (global) clock (a template parameter)? *)
    else if (VarContext.mem clockref (Some tmp, name)) then
      let refid = VarContext.index_of_var clockref (Some tmp, name) in
      let refname = Hashtbl.find ref_clocks refid in
      let varid = VarContext.index_of_var clockcont (None, refname) in
      Clock(varid)
    else (
      eprintf "Printing final VarContext\n";
      VarContext.iter 
        (fun (t,name) ind ->
            let scope = match t with
              | None -> "Global"
              | Some tmp -> sprintf "Local to process # %d" tmp
            in
            eprintf "\t%d <%s> : %s\n" ind  name scope
        ) clockcont;
      printf "%b\n" (VarContext.mem clockcont (Some tmp, name));
      failwith (sprintf "Undefined clock <%s>" name)
    )

  let cb_expression_sum a b = Sum (a,b)
  let cb_expression_product a b = Product (a,b)
  let cb_expression_substraction a b = Substraction (a,b)
  let cb_expression_division a b = Division (a,b)

mcolange's avatar
mcolange committed
187 188 189
  (** A guard is a conjunction of atomic guards *)
  type guard = atomic_guard list

190
  (** clocks and variables updates *)
191
  type lvalue = ClockRef of clock_t | VarRef of int | ArrayRef of int * expression list
192
  type update = lvalue * expression
mcolange's avatar
mcolange committed
193

194 195 196 197 198 199 200 201
  type chanref =
      ChanId of int
    | ChanArray of int * expression list

  let cb_channel_array chanarraycont arrayName indices =
    let aid = VarContext.index_of_var chanarraycont (None, arrayName)
    in ChanArray(aid, indices)

202
  type simplechan = 
203 204
      SendChan of chanref
    | RecvChan of chanref
205 206
  

mcolange's avatar
mcolange committed
207 208 209 210
  type edge = {
    edgeSource : int;
    edgeGuard : guard;
    edgeDiscGuard : guard;
211
    edgeUpdates : update list;
mcolange's avatar
mcolange committed
212
    edgeTarget : int;
213
    edgeSync : simplechan option;
214
    edgeProc : int; (* proc id *)
215 216
    edgeControllable : bool;
    edgeCost : Costs.edge_cost; (* the cost of this edge [default is 0] *)
mcolange's avatar
mcolange committed
217 218 219 220 221 222 223 224
  }
  and location = {
    locId : int;
    mutable locName : string;
    locCommitted : bool;
    locUrgent : bool;
    locInvar : guard;
    locEdges : edge list;
225
    locProc : int; (* proc id *)
226 227 228
    locRate : Costs.loc_rate;
      (* the cost rate of time elapsing in this location [default is None] *)
      (* the cost rate of an array of location is the sum of their cost rates *)
mcolange's avatar
mcolange committed
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  }
  and process = {
    procName : string;
    procId : int;
    procLocations : location array;
    procInitLoc : int;
  }
  type discrete_state = {
    stateLocs : location array;
    stateVars : int array;
  }

  type transition = InternalTrans of discrete_state * edge
                  | SyncTrans of discrete_state * edge * edge

244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  let hash_discrete_state s =
    let tmp = Array.fold_right
      (fun x r -> r + x.locId + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
      s.stateLocs 0
    in Array.fold_right
      (fun x r -> r + x + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
      s.stateVars tmp

  let is_state_equal s t =
    let rec aux_loc a b n =
      if (n < 0) then true else
      if (a.(n).locId = b.(n).locId) then
        if (n > 0) then
          aux_loc a b (n-1)
        else true
      else false
    in
    let rec aux_var a b n =
      if (n < 0) then true else
      if (a.(n) = b.(n)) then
        if (n > 0) then
          aux_var a b (n-1)
        else true
      else false
    in
    (aux_loc s.stateLocs t.stateLocs (Array.length s.stateLocs - 1))
    &&
    (aux_var s.stateVars t.stateVars (Array.length s.stateVars - 1))

  module DS = struct
    type t = discrete_state
    let equal = is_state_equal
    let hash = hash_discrete_state
  end

  module DSHashtbl = Hashtbl.Make(DS)

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  (** A succinct version of the above to be used in hash tables *)
  type _succinct_transition = int array * guard

  module GuardHashtbl = Hashtbl.Make(
    struct
      type t = _succinct_transition

      let equal x y = x = y

      let hash (a,b) =
        Array.fold_right
          (fun x r -> r + x + 0x9e3779b9 + (r lsl 6) + (r lsr 2))
          a (Hashtbl.hash b)
    end
  )
mcolange's avatar
mcolange committed
297

298
  (* TODO add a VarContext for array names (and pretty printing) *)
mcolange's avatar
mcolange committed
299
  type timed_automaton = { 
300
    procs : process array; (* forall i: procs.(i).procId = i *)
301
    constcelltoindex : (int * int list, int) Hashtbl.t;
302
    celltoindex : (int * int list, int) Hashtbl.t;
303
    chancelltoid : (int * int list, int) Hashtbl.t;
mcolange's avatar
mcolange committed
304 305
    clocks : string VarContext.t;
    vars : string VarContext.t;
306 307
    constants : string VarContext.t;
    constvalues : int array;
mcolange's avatar
mcolange committed
308
    init : discrete_state;
309
    query : query;
310 311
    lubounds_tbl : (int array * int array) DSHashtbl.t;
    lubounds_tbl_c : (Udbml.Carray.t * Udbml.Carray.t) DSHashtbl.t;
312
    mbounds_tbl_c : Udbml.Carray.t DSHashtbl.t;
313
    guards_tbl : UDbm.Dbm.t GuardHashtbl.t;
314
    invars_tbl : UDbm.Dbm.t DSHashtbl.t;
mcolange's avatar
mcolange committed
315
    global_mbounds : int array;
mcolange's avatar
mcolange committed
316 317 318 319 320 321 322 323
  }
  

  (********** PRINTING AUXILIARY FUNCTIONS **********)
  let rec string_of_exp ta e = 
    let string_of_exp = string_of_exp ta in
    (function
      | Constant c -> sprintf "%d" c 
324 325
      | Array(aid, indices) -> 
          List.fold_left (fun s x -> sprintf "%s[%s]" s (string_of_exp x)) (string_of_int aid) indices
mcolange's avatar
mcolange committed
326
      | Variable(id) -> VarContext.var_of_index ta.vars id
327
      | ConstVariable(id) -> VarContext.var_of_index ta.constants id
mcolange's avatar
mcolange committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
      | Clock(id) ->  VarContext.var_of_index ta.clocks id
      | Product(e1,e2) ->
        sprintf "%s * %s" (string_of_exp e1)
          (string_of_exp e2)
      | Sum(e1,e2) ->
        sprintf "(%s + %s)" (string_of_exp e1)
          (string_of_exp e2)
      | Division(e1,e2) ->
        sprintf "%s / %s" (string_of_exp e1)
          (string_of_exp e2)
      | Substraction(e1,e2) ->
        sprintf "(%s - %s)" (string_of_exp e1)
          (string_of_exp e2)
    ) e


  let string_of_atomic_guard ta = 
    let string_of_exp = string_of_exp ta in
    function
    |  GuardLeq(v,exp) ->
      sprintf "%s <= %s" (string_of_exp v)(string_of_exp exp)
    | GuardLess(v,exp) ->
      sprintf "%s < %s" (string_of_exp v)(string_of_exp exp)
    | GuardGeq(v,exp)->
      sprintf "%s >= %s" (string_of_exp v)(string_of_exp exp)
    | GuardGreater(v,exp)->
      sprintf "%s > %s" (string_of_exp v) (string_of_exp exp)
    | GuardEqual(v,exp)->
      sprintf "%s == %s" (string_of_exp v) (string_of_exp exp)
357 358
    | GuardNeq(v,exp)->
      sprintf "%s != %s" (string_of_exp v) (string_of_exp exp)
mcolange's avatar
mcolange committed
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373


  let xml_string_of_atomic_guard ta = 
    let string_of_exp = string_of_exp ta in       
    function
    |  GuardLeq(v,exp) ->
      sprintf "%s &lt;= %s" (string_of_exp v)(string_of_exp exp)
    | GuardLess(v,exp) ->
      sprintf "%s &lt; %s" (string_of_exp v)(string_of_exp exp)
    | GuardGeq(v,exp)->
      sprintf "%s &gt;= %s" (string_of_exp v)(string_of_exp exp)
    | GuardGreater(v,exp)->
      sprintf "%s &gt; %s" (string_of_exp v) (string_of_exp exp)
    | GuardEqual(v,exp)->
      sprintf "%s == %s" (string_of_exp v) (string_of_exp exp)
374 375
    | GuardNeq(v,exp)->
      sprintf "%s != %s" (string_of_exp v) (string_of_exp exp)
mcolange's avatar
mcolange committed
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397


  let rec string_of_guard ta = 
    function
    | [] -> ""
    | [x] -> string_of_atomic_guard ta x
    | x :: y :: l -> 
      ((string_of_atomic_guard ta x) ^ " && ")
      ^ (string_of_guard ta (y::l))


  let rec xml_string_of_guard ta =
    function
    | [] -> ""
    | [x] -> xml_string_of_atomic_guard ta x
    | x :: y :: l -> 
      ((xml_string_of_atomic_guard ta x) ^ " &amp;&amp; ")
      ^ (xml_string_of_guard ta (y::l))


  let string_of_updates ta ups = 
    let ups_str = 
398 399 400 401 402 403
      List.map (fun (var,exp) -> 
        let lhsname = match var with
          | ClockRef(c) -> VarContext.var_of_index ta.clocks c
          | VarRef(v) -> VarContext.var_of_index ta.vars v
        in
        sprintf "%s = %s" lhsname (string_of_exp ta exp)) ups in
mcolange's avatar
mcolange committed
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    String.concat ", " ups_str

    
  let string_of_state ta state =
    let out = Buffer.create 50 in 
    Array.iter (fun loc -> Buffer.add_string out loc.locName;
                 Buffer.add_string out " ") state.stateLocs;
    if (Array.length state.stateVars > 0 ) then (
      Buffer.add_string out "\n";
      Array.iteri (fun i v ->
          let name = VarContext.index2var ta.vars i in
          Buffer.add_string out (sprintf "%s = %d, " name v)) state.stateVars;
    );
    (*    Buffer.add_string out "\n";*)
    Buffer.contents out

    
  let string_of_edge ta edge = 
422
    let proc = ta.procs.(edge.edgeProc) in
423 424 425 426 427
    let print_chanref = function
      | ChanId(c) -> string_of_int c
      | ChanArray(aid,indices) ->
          List.fold_left (fun s x -> sprintf "%s[%s]" s (string_of_exp ta x)) (string_of_int aid) indices
    in
mcolange's avatar
mcolange committed
428 429
    let sync = match edge.edgeSync with 
      |None -> ""
430 431
      |Some(SendChan(c)) -> (print_chanref c)^"!"
      |Some(RecvChan(c)) -> (print_chanref c)^"?"
mcolange's avatar
mcolange committed
432 433 434
    in
    let discguardstr = string_of_guard ta edge.edgeDiscGuard in
    let guardstr = string_of_guard ta edge.edgeGuard in
435
    sprintf "%s%s -> %s \tDiscGuard: %s \tGuard: %s \tUpdates:%s \tSync:%s" 
mcolange's avatar
mcolange committed
436 437 438 439 440
      (if (edge.edgeControllable) then "" else "[E]")
      (proc.procLocations.(edge.edgeSource).locName)
      (proc.procLocations.(edge.edgeTarget).locName)
      discguardstr
      guardstr
441
      (string_of_updates ta edge.edgeUpdates)
mcolange's avatar
mcolange committed
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
      sync

  
  let string_of_location ta loc =
    let out = Buffer.create 128 in
    let utter = Buffer.add_string out in
    utter (sprintf "Location %d: %s "loc.locId loc.locName);
    if (loc.locCommitted) then
      utter "committed ";
    utter (string_of_guard ta loc.locInvar);
    utter "\n";
    utter (sprintf "Has %d edges:\n" (List.length loc.locEdges));
    let edgestrlist = (List.map (string_of_edge ta) loc.locEdges) in
    utter (String.concat "\n" edgestrlist);
    utter "\n";
    Buffer.contents out


  let string_of_process ta proc = 
    let out = Buffer.create 1000 in
    let utter = Buffer.add_string out in
    utter (sprintf "Process(%d): %s\n"  proc.procId proc.procName);
    Array.iter (fun loc -> utter (string_of_location ta loc)) proc.procLocations;
    utter (sprintf "Initial location id: %d\n" proc.procInitLoc);
    Buffer.contents out


  let string_of_transition ta tr =
    let buf = Buffer.create 128 in
    let out = Buffer.add_string buf in
472
    let proc_name e = ta.procs.(e.edgeProc).procName in
mcolange's avatar
mcolange committed
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    match tr with 
      InternalTrans(state,e) ->
      out (sprintf "From global state: %s\n" (string_of_state ta state));
      out (string_of_edge ta e);
      Buffer.contents buf
    | SyncTrans(state,e1,e2) ->
      out (sprintf "Synchronized Transition btw Processes: %s - %s\n Source: %s\n" (proc_name e1) (proc_name e2)
             (string_of_state ta state));
      out "Sync:\n";
      out (string_of_edge ta e1);
      out "\n";
      out (string_of_edge ta e2);
      Buffer.contents buf


  (********** OTHER AUXILIARY FUNCTIONS **********)
    
  let rec eval_disc_exp ta vars exp =
    try
      let k = 
        (match exp with
         | Constant c -> c
495 496 497 498
         | ConstVariable(id) ->
           if ( id < 0 || id >= Array.length ta.constvalues ) then
             failwith (sprintf "Const var index %d out of bounds (%d)" id (Array.length ta.constvalues));
           ta.constvalues.(id)
mcolange's avatar
mcolange committed
499 500 501 502 503
         | Variable(id) -> 
           if ( id < 0 || id >= Array.length vars ) then
             failwith (sprintf "Var index %d out of bounds (%d)" id (Array.length vars));
           vars.(id)
         | Clock(id) ->raise Found
504
         | Array(arrayId, l) -> 
505 506 507 508 509 510 511
              let indices = List.map (fun x -> eval_disc_exp ta vars x) l in
              if Hashtbl.mem ta.constcelltoindex (arrayId, indices) then
                let cellindex = Hashtbl.find ta.constcelltoindex (arrayId, indices) in
                eval_disc_exp ta vars (ConstVariable cellindex)
              else
                let cellindex = Hashtbl.find ta.celltoindex (arrayId, indices) in
                eval_disc_exp ta vars (Variable cellindex)
mcolange's avatar
mcolange committed
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
         | Product(e1,e2) -> (eval_disc_exp ta vars e1) * (eval_disc_exp ta vars e2)
         | Sum(e1,e2) -> (eval_disc_exp ta vars e1) + (eval_disc_exp ta vars e2)
         | Division(e1,e2) -> (eval_disc_exp ta vars e1) / (eval_disc_exp ta vars e2)
         | Substraction(e1,e2) -> (eval_disc_exp ta vars e1) - (eval_disc_exp ta vars e2)
        ) in
      (*
      eprintf "%s -----> %d\n" (string_of_exp ta exp) k;
       *)
      k
    with Found ->
      failwith ("Discrete expression contains clock: " ^ (string_of_exp ta exp)); 
       | e -> raise e

       
  let source_location_of_edge ta edge =
527
    ta.procs.(edge.edgeProc).procLocations.(edge.edgeSource)
mcolange's avatar
mcolange committed
528 529 530


  let eval_disc_guard ta state guard =
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    let rec aux_eval t v = function
      | [] -> true
      | GuardLeq(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              <=  (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
      | GuardLess(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              <   (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
      | GuardGeq(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              >=  (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
      | GuardGreater(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              >   (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
      | GuardEqual(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              =   (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
563 564 565 566 567 568
      | GuardNeq(e1,e2) :: l ->
          if (    (eval_disc_exp t v e1)
              <>  (eval_disc_exp t v e2)) then
                aux_eval t v l
          else
            false
569
    in aux_eval ta state.stateVars guard
mcolange's avatar
mcolange committed
570 571 572 573


  let _guard_to_dbm ta state g =
    let nclocks = VarContext.size ta.clocks in
574 575
    let dbm = UDbm.Dbm.create nclocks in
    UDbm.Dbm.set_init dbm;
mcolange's avatar
mcolange committed
576 577 578
    let aux = function
      | GuardLeq(Clock(c), e) ->
          let k = eval_disc_exp ta state e in
579
          UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_WEAK))
mcolange's avatar
mcolange committed
580 581
      | GuardLess(Clock(c), e) ->
        let k = eval_disc_exp ta state e in
582
        UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_STRICT))
mcolange's avatar
mcolange committed
583 584
      | GuardGeq(Clock(c), e) ->
        let k = eval_disc_exp ta state e in
585
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_WEAK))
mcolange's avatar
mcolange committed
586 587
      | GuardGreater(Clock(c), e) ->
        let k = eval_disc_exp ta state e in
588
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_STRICT))
mcolange's avatar
mcolange committed
589 590
      | GuardEqual(Clock(c), e) ->
        let k = eval_disc_exp ta state e in
591 592
        UDbm.Dbm.constrain dbm (0, c, (-k, Udbml.Basic_types.DBM_WEAK));
        UDbm.Dbm.constrain dbm (c, 0, (k, Udbml.Basic_types.DBM_WEAK))
mcolange's avatar
mcolange committed
593 594 595 596 597 598 599
      | _ as e -> failwith (sprintf "Bad Guard: %s" (string_of_guard ta [e]))
    in
    List.iter aux g;
    dbm


  let is_committed state =
600 601 602 603 604 605
    let rec aux ar n =
      if (ar.(n).locCommitted) then true
      else if (n > 0) then
        aux ar (n-1)
      else false
    in aux state.stateLocs (Array.length state.stateLocs - 1)
mcolange's avatar
mcolange committed
606 607 608 609 610 611 612

  
  let _copy_state state = 
    { stateVars = Array.copy state.stateVars;
      stateLocs = Array.copy state.stateLocs}


613 614
  (** Apply discrete update of edge to state, result written in state'
   *  Along the way, instantiate clock updates and return them *)
mcolange's avatar
mcolange committed
615
  let _apply_edge ta state edge state' =
616
    let result = ref [] in
617
    state'.stateLocs.(edge.edgeProc) <- ta.procs.(edge.edgeProc).procLocations.(edge.edgeTarget);
618 619 620
    List.iter (fun (lhs,e) ->
      match lhs with
        | VarRef(id) -> state'.stateVars.(id) <- eval_disc_exp ta state'.stateVars e
621 622 623 624 625
        | ClockRef(id) -> result := !result @ [(id, eval_disc_exp ta state'.stateVars e)]
        | ArrayRef(id,ilist) ->
            let indices = List.map (fun x -> eval_disc_exp ta state'.stateVars x) ilist in
            let cellId = Hashtbl.find ta.celltoindex (id,indices) in
            state'.stateVars.(cellId) <- eval_disc_exp ta state'.stateVars e)
626 627
    edge.edgeUpdates;
    !result
mcolange's avatar
mcolange committed
628 629 630 631 632 633 634 635 636


  (********** TIMED_AUTOMATON interface **********)
  let clocks ta = ta.clocks

  let initial_discrete_state ta = ta.init

  let invariant_of_discrete_state ta state =
    try
637
      DSHashtbl.find ta.invars_tbl state
mcolange's avatar
mcolange committed
638 639 640 641
    with Not_found ->
      let glob_inv =
        Array.fold_left (fun acc loc -> loc.locInvar @ acc ) [] state.stateLocs in
      let inv = _guard_to_dbm ta state.stateVars glob_inv in
642
      DSHashtbl.add ta.invars_tbl state inv;
mcolange's avatar
mcolange committed
643 644 645
      inv
       | _ as e -> raise e

Maximilien Colange's avatar
Maximilien Colange committed
646
  let rate_of_state ta state =
647
    Costs.get_rate (Array.map (fun loc -> loc.locRate) state.stateLocs) (eval_disc_exp ta state.stateVars)
Maximilien Colange's avatar
Maximilien Colange committed
648

mcolange's avatar
mcolange committed
649 650 651
  let initial_extended_state ta =
    let dim = (VarContext.size (clocks ta)) in
    let z = Dbm.create dim in
652 653
    Dbm.set_zero z;
    (ta.init, z)
654 655 656 657 658 659 660 661
   
  let eval_chan ta state = function
    | ChanId(c) -> ChanId(c)
    | ChanArray(arrayId, l) ->
      let indices = List.map (fun x -> eval_disc_exp ta state.stateVars x) l in
      let cellindex = Hashtbl.find ta.chancelltoid (arrayId, indices) in
      ChanId (cellindex)

662
  let _transitions_from ta state = 
mcolange's avatar
mcolange committed
663 664 665 666 667 668 669 670 671 672 673 674 675 676
    let committed = is_committed state in
    let transq = Queue.create () in
    (* Queue of synchronizing edges *)
    let rchan = Queue.create () in
    let schan = Queue.create () in
    let nproc = Array.length ta.procs in
    for i = 0 to nproc - 1 do
      let loc = state.stateLocs.(i) in
      let add_single = not committed || loc.locCommitted in
      List.iter
        (fun edge ->
          if (eval_disc_guard ta state edge.edgeDiscGuard) then
            (match edge.edgeSync with
              | Some (SendChan(c)) ->
677
                  Queue.add (eval_chan ta state c, edge) schan
mcolange's avatar
mcolange committed
678
              | Some (RecvChan(c)) ->
679
                  Queue.add (eval_chan ta state c, edge) rchan
mcolange's avatar
mcolange committed
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
              | None ->
                  if (add_single) then
                    Queue.add (InternalTrans (state, edge)) transq
            )
        ) loc.locEdges
    done;
    Queue.iter
      (fun (rname, redge) ->
        Queue.iter
          (fun (sname, sedge) ->
            (* Sync if same channels are used by different processes *)
            if (rname = sname && redge.edgeProc <> sedge.edgeProc) then (
              (* and if state not committed or one of the participating states is *)
              let sloc = source_location_of_edge ta sedge in
              let rloc = source_location_of_edge ta redge in
              if (not committed || sloc.locCommitted || rloc.locCommitted) then
                Queue.add (SyncTrans (state, redge, sedge)) transq
            )
          ) schan
      ) rchan;
    Queue.fold (fun l tr -> tr :: l) [] transq

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  let guard_of_transition ta tr = 
    let to_succinct = function
      |InternalTrans(s,e) -> (s.stateVars,e.edgeGuard)
      |SyncTrans(s,e1,e2) -> (s.stateVars,List.rev_append e1.edgeGuard e2.edgeGuard)
    in
    let (vars,succ_guard) as str = to_succinct tr in
    try 
      GuardHashtbl.find ta.guards_tbl str
    with Not_found ->
      let g = _guard_to_dbm ta vars succ_guard in
      GuardHashtbl.add ta.guards_tbl str g;
      g
      | _ as e -> raise e

  let transition_fields ta tr = match tr with
mcolange's avatar
mcolange committed
717 718
    | InternalTrans(state, e) ->
        let state' = _copy_state state in
719
        let resets = _apply_edge ta state e state' in
mcolange's avatar
mcolange committed
720
        (state,
721
         guard_of_transition ta tr,
722
         resets,
mcolange's avatar
mcolange committed
723 724 725
         state')
    | SyncTrans(state, e1, e2) ->
        let state' = _copy_state state in
726 727
        let resets1 = _apply_edge ta state e1 state' in
        let resets2 = _apply_edge ta state e2 state' in
728
        let g = guard_of_transition ta tr in
729
        (state, g, resets1 @ resets2, state')
mcolange's avatar
mcolange committed
730

731 732 733
  let transitions_from ta state =
    List.map (fun tr -> transition_fields ta tr) (_transitions_from ta state)

734 735 736 737 738 739 740 741 742 743
  let transition_to_string ta (source, dbm, ulist, target) =
    let res = List.find
      (fun trans ->
        let (_, d, u, t) = transition_fields ta trans in
        is_state_equal target t && ulist = u && UDbm.Dbm.equal dbm d)
      (_transitions_from ta source)
    in
    string_of_transition ta res


mcolange's avatar
mcolange committed
744
  let is_urgent_or_committed ta state =
745 746 747 748 749 750
    let rec aux ar n =
      if (ar.(n).locCommitted || ar.(n).locUrgent) then true
      else if (n > 0) then
        aux ar (n-1)
      else false
    in aux state.stateLocs (Array.length state.stateLocs - 1)
mcolange's avatar
mcolange committed
751 752

  let is_target ta state =
753 754 755 756 757 758
    let rec eval_query = function
      | EmptyQuery -> true
      | QueryAnd(l,r) -> (eval_query l) && (eval_query r)
      | QueryOr(l,r) -> (eval_query l) || (eval_query r)
      | Location(procId,locId) -> state.stateLocs.(procId).locId = locId
      | Atomic(ag) -> eval_disc_guard ta state [ag]
mcolange's avatar
mcolange committed
759
    in
760
    eval_query ta.query
mcolange's avatar
mcolange committed
761

mcolange's avatar
mcolange committed
762 763
  let lu_bounds ta state =
    try
764
      DSHashtbl.find ta.lubounds_tbl_c state
mcolange's avatar
mcolange committed
765 766
    with Not_found ->
      let nclocks = VarContext.size ta.clocks in
767 768 769 770
      let lower,upper = DSHashtbl.find ta.lubounds_tbl state in
      let lar,uar = (Udbml.Carray.to_c lower nclocks, Udbml.Carray.to_c upper nclocks) in
      DSHashtbl.add ta.lubounds_tbl_c state (lar,uar);
      (lar,uar)
mcolange's avatar
mcolange committed
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785
  let m_bounds ta state =
    try
      DSHashtbl.find ta.mbounds_tbl_c state
    with Not_found ->
      let nclocks = VarContext.size ta.clocks in
      let lower,upper = DSHashtbl.find ta.lubounds_tbl state in
      let mbound = Array.make nclocks 0 in
      for cl = 0 to nclocks-1 do
        mbound.(cl) <- max lower.(cl) upper.(cl)
      done;
      let res = Udbml.Carray.to_c mbound nclocks in
      DSHashtbl.add ta.mbounds_tbl_c state res;
      res

mcolange's avatar
mcolange committed
786
  let global_m_bounds ta =
mcolange's avatar
mcolange committed
787 788 789
    if (ta.global_mbounds.(0) <> 0) then (
      let nclocks = VarContext.size (clocks ta) in
      ta.global_mbounds.(0) <- 0;
790 791 792 793 794 795 796 797
      DSHashtbl.iter (fun _ -> fun (lbound,ubound) ->
        for cl = 0 to nclocks-1 do
          ta.global_mbounds.(cl) <- max ta.global_mbounds.(cl) lbound.(cl);
          ta.global_mbounds.(cl) <- max ta.global_mbounds.(cl) ubound.(cl)
        done) ta.lubounds_tbl;
      Array.iteri (fun cl m ->
        if (m < 0) then
          printf "clock %d (of bound %d) is never read!?\n" cl m) ta.global_mbounds
mcolange's avatar
mcolange committed
798 799
    );
    ta.global_mbounds
mcolange's avatar
mcolange committed
800 801 802 803 804 805 806 807 808

  let global_m_invariant ta =
    let marray = global_m_bounds ta in
    let inv_guard = ref [] in
    for i = 0 to (Array.length marray)-1 do
      inv_guard := (GuardLeq (Clock i, Constant marray.(i))) :: !inv_guard
    done;
    _guard_to_dbm ta ta.init.stateVars !inv_guard
    
mcolange's avatar
mcolange committed
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
  (** print functions *)
  let print_discrete_state chan ta state =
    fprintf chan "%s\n" (string_of_state ta state)
  
  let print_transition chan ta trans = 
    fprintf chan "%s\n" (string_of_transition ta trans)

  let print_timed_automaton chan ta =
    fprintf chan "Timed automaton with %d clocks and %d processes\n"
      (VarContext.size ta.clocks) (Array.length ta.procs);
    Array.iter (fun proc -> fprintf chan "%s\n-----\n" (string_of_process ta proc)) ta.procs
 
  let print_extended_state chan ta (state,dbm) =
    fprintf chan "%s " (string_of_state ta state);
    fprintf chan "%s " (Dbm.to_string dbm)

  (********** LOADING FUNCTIONS **********)
  
827 828 829
  let _transition_fields ta tr = match tr with
    | InternalTrans(state, e) ->
        let state' = _copy_state state in
830
        let resets = _apply_edge ta state e state' in
831 832
        (state,
         e.edgeGuard,
833
         resets,
834 835 836
         state')
    | SyncTrans(state, e1, e2) ->
        let state' = _copy_state state in
837 838 839
        let resets1 = _apply_edge ta state e1 state' in
        let resets2 = _apply_edge ta state e2 state' in
        (state, e1.edgeGuard @ e2.edgeGuard, resets1 @ resets2, state')
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

  (* propagate the clocks given in input, and return a set of clocks still
   * worth to propagate
   *)
  let propagate lparent uparent lson uson updates clocks =
    let res = ref ClockSet.empty in
    (* for every element of clocks, check whether to propagate *)
    ClockSet.iter (fun cl ->
      (* a clock does not propagate past an update *)
      if (List.for_all (fun (i,_) -> i <> cl) updates) then
        begin
          (* a clock is worth propagating later on if it propagates here *)
          if (lparent.(cl) < lson.(cl)) then (
            lparent.(cl) <- lson.(cl);
            res := ClockSet.add cl !res
          );
          if (uparent.(cl) < uson.(cl)) then (
            uparent.(cl) <- uson.(cl);
            res := ClockSet.add cl !res
          )
        end) clocks;
    !res

  exception Early_stop

  (** To compute LU (and M) bounds, we first explore the whole discrete
   *  state space.
   *  At each discrete state s, each clock c is given the largest constant
   *  against which it is compared in s.
   *  Then, larger bounds propagate backwards, but not CROSS resets.
   *  The best way to do this (with the retropropagation) is a DFS of the
   *  discrete state space
   *)
  (* TODO by adapting the walk order, the M bounds could be computed on the fly,
   *      while the real state space is being discovered
   *)
  let build_lu ta =
mcolange's avatar
mcolange committed
877
    let nclocks = VarContext.size ta.clocks in
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    let trace = Stack.create () in
    (* trace is a stack of discrete_state * (transition list) *)
    (* to get a list of transitions from a discrete state, use _transitions_from *)
    let init = initial_discrete_state ta in
    let init_edges = _transitions_from ta init in
    Stack.push (init, init_edges) trace;
    let ltmp, utmp = Array.make nclocks (-Dbm.infty), Array.make nclocks (-Dbm.infty) in
    DSHashtbl.add ta.lubounds_tbl init (ltmp,utmp);
    while (not (Stack.is_empty trace)) do
      let (current, edges) = Stack.top trace in
      match edges with
        | [] -> begin
            (* pop the stack *)
            let _ = Stack.pop trace in
            (* we are done with this state, retropropagation *)
            let son = ref current in
            let clocks = ref ClockSet.empty in
            for cl = 1 to nclocks-1 do clocks := ClockSet.add cl !clocks done;
            (* Do the bound retropropagation *)
            begin
            try
              Stack.iter (fun (parent, edge :: _) ->
                if (ClockSet.is_empty !clocks) then
                  raise Early_stop;
                let lson,uson = DSHashtbl.find ta.lubounds_tbl !son in
                let lparent,uparent = DSHashtbl.find ta.lubounds_tbl parent in
                let (_,_,updates,_) = _transition_fields ta edge in
                clocks := propagate lparent uparent lson uson updates !clocks;
                son := parent
              ) trace;
            with
              | Early_stop -> ()
            end;
            (* get the parent state, its first edge is the one between parent and current *)
            if (not (Stack.is_empty trace)) then (
              let (parent, _::l) = Stack.pop trace in
              (* repush the parent and its remaining edges *)
              Stack.push (parent, l) trace;
            )
        end
        | edge :: rest -> begin
          let (_,guard,updates,succ) = _transition_fields ta edge in
          let (current_lower,current_upper) = DSHashtbl.find ta.lubounds_tbl current in
          (* update the bounds of current thanks to current transition *)
          List.iter (function
            | GuardLeq(Clock(cl),e)
            | GuardLess(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_upper.(cl) <- max current_upper.(cl) r
            | GuardEqual(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_upper.(cl) <- max current_upper.(cl) r;
                current_lower.(cl) <- max current_lower.(cl) r
            | GuardGeq(Clock(cl),e)
            | GuardGreater(Clock(cl),e) ->
                let r = eval_disc_exp ta current.stateVars e in
                current_lower.(cl) <- max current_lower.(cl) r
            | _ -> failwith "cannot compute LU bounds, guard not in normal form")
          guard;

          (* now take care of the succ *)
          if (DSHashtbl.mem ta.lubounds_tbl succ) then
            (* if already discovered, push it on the stack with an empty list of
             * edges in order to have the correct retropropagation *)
            begin
              Stack.push (succ, []) trace
            end
          else
            (* if new, add it to the hashtable and push it on the stack *)
            begin
              let ltmp, utmp = Array.make nclocks (-Dbm.infty), Array.make nclocks (-Dbm.infty) in
              DSHashtbl.add ta.lubounds_tbl succ (ltmp,utmp);
              let succ_edges = _transitions_from ta succ in
              Stack.push (succ, succ_edges) trace
            end
        end
954 955 956 957 958 959
    done;
    DSHashtbl.iter (fun _ -> fun (lbound,ubound) ->
      for cl=0 to nclocks-1 do
        if (lbound.(cl) < 0) then lbound.(cl) <- 0;
        if (ubound.(cl) < 0) then ubound.(cl) <- 0
      done) ta.lubounds_tbl
960 961

  (** Constructs a timed_automaton from the C data structure produced by the
962 963 964 965 966 967 968 969 970
   *  library utap.
   *  TODO compared to previous version, this lacks:
     *  parameterization by guard_of_transition
     *  parameterization by invariant_of_discrete_state
     *  scaling
     *  enlarging
   *  This hinders the ability to instantiate to other kinds of automata,
   *  such as enlarged automata
   *)
971
  external utap_from_file : string -> string -> timed_automaton = "xta_from_xmlfile";;
972

973
  let build_ta_from_processes clockcont varcont var_init_values arraycells arraycelltochan constarraycells constcont constvalues procs query =
974 975 976 977 978 979 980
    (* Fill in the edgeProc and locProc fields in all locations and edges *)
    Array.iter (fun proc -> 
        Array.iter (fun loc -> 
            loc.locName <- proc.procName ^ "." ^ loc.locName;
          ) proc.procLocations
      )
      procs;
mcolange's avatar
mcolange committed
981 982 983 984 985 986 987 988 989 990 991
    (* Convert the (template,string) VarContext.t  to string VarContext.t
       by prepending the process names to variables and clocks. 
       We will just extract these elements from the hash tables, along with their indices,
       so as to reinsert them in the same order in the new VarContext.
       These contexts are only for pretty printing and have no role in simulation
    *)
    let get_vc_elements vc = 
      Hashtbl.fold 
        (fun (tmp,name) index acc ->
           let prefix = match tmp with
               None -> ""
992
             | Some procId -> procs.(procId).procName  ^ "."
mcolange's avatar
mcolange committed
993 994 995 996 997 998 999
           in
           let name = sprintf "%s%s" prefix name in
           (index,name) :: acc
        ) (VarContext.get_var2index vc) [] 
    in    
    let clist = List.sort compare (get_vc_elements clockcont) in
    let vlist = List.sort compare (get_vc_elements varcont) in
1000
    let constlist = List.sort compare (get_vc_elements constcont) in
mcolange's avatar
mcolange committed
1001 1002
    let clocks = VarContext.create () in
    let vars = VarContext.create () in
1003
    let constants = VarContext.create () in
mcolange's avatar
mcolange committed
1004 1005
    List.iter (fun (_,name) -> VarContext.add clocks name) clist;
    List.iter (fun (_,name) -> VarContext.add vars name) vlist;
1006 1007 1008 1009 1010 1011 1012
    List.iter (fun (_,name) -> VarContext.add constants name) constlist;
    (* build the array of const values *)
    let nconst = (Hashtbl.length constvalues) in
    let const_val = Array.make nconst 0 in
    for i = 0 to nconst-1 do
      const_val.(i) <- Hashtbl.find constvalues i;
    done;
1013
    let nvars = (Hashtbl.length var_init_values) in
mcolange's avatar
mcolange committed
1014
    let initLocs = Array.map (fun proc -> proc.procLocations.(proc.procInitLoc)) procs in
1015
    let initVars = Array.make nvars 0 in
mcolange's avatar
mcolange committed
1016 1017 1018 1019 1020
    for i = 0 to nvars-1 do
      initVars.(i) <- Hashtbl.find var_init_values i;
    done;
    let ta = {
      procs = procs;
1021
      constcelltoindex = constarraycells;
1022
      celltoindex = arraycells;
1023
      chancelltoid = arraycelltochan;
mcolange's avatar
mcolange committed
1024 1025
      clocks = clocks;
      vars = vars;
1026 1027
      constants = constants;
      constvalues = const_val;
mcolange's avatar
mcolange committed
1028
      init = {stateLocs = initLocs; stateVars = initVars};
1029
      query = query;
1030 1031
      lubounds_tbl = DSHashtbl.create 1024;
      lubounds_tbl_c = DSHashtbl.create 1024;
1032
      mbounds_tbl_c = DSHashtbl.create 1024;
1033
      guards_tbl = GuardHashtbl.create 1024;
1034
      invars_tbl = DSHashtbl.create 1024;
mcolange's avatar
mcolange committed
1035
      global_mbounds = Array.make (VarContext.size clocks) (-Dbm.infty)
mcolange's avatar
mcolange committed
1036
    }
1037 1038
    in
    build_lu ta;
mcolange's avatar
mcolange committed
1039
    ta
1040
    
1041
  let make_ta tafile qfile =
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    (** Variable and clock contexts have initially keys of type (p,name)
     * where p is process option (None for global variables),
     * and name the name of the variable. *)
    let varcont = VarContext.create () in
    let var_init_values = Hashtbl.create 10 in
    let const_values = Hashtbl.create 10 in
    let ref_clocks = Hashtbl.create 10 in
    let ref_variables = Hashtbl.create 10 in
    let clockcont = VarContext.create () in
    let constcont = VarContext.create () in
    let clockref = VarContext.create () in
    let varref = VarContext.create () in
    Callback.register "cb_expression_constant" cb_expression_constant;
    Callback.register "cb_expression_variable"
      (cb_expression_variable constcont const_values varcont varref ref_variables);
    Callback.register "cb_expression_clock"
      (cb_expression_clock clockcont clockref ref_clocks);
    Callback.register "cb_expression_sum" cb_expression_sum;
    Callback.register "cb_expression_product" cb_expression_product;
    Callback.register "cb_expression_substraction" cb_expression_substraction;
    Callback.register "cb_expression_division" cb_expression_division;

1064
    (* C callbacks for global arrays of integers *)
1065 1066 1067 1068 1069 1070 1071
    let arraycont = VarContext.create () in
    let arraycelltovar = Hashtbl.create 10 in
    let cb_register_global_array_name arrayName =
      VarContext.add arraycont (None, arrayName)
    in
    Callback.register "cb_register_global_array_name" cb_register_global_array_name;
    let cb_register_global_array_cell cellName value =
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      VarContext.add varcont (None, cellName);
      let cellId = VarContext.index_of_var varcont (None, cellName) in
      Hashtbl.add var_init_values cellId value;
      let firstLSB = String.index cellName '[' in
      let arrayName = String.sub cellName 0 firstLSB in
      let last = ref (firstLSB+1) in
      let indexes = ref [] in
      let split pos = function
        | '[' -> last := pos+1
        | ']' ->
            let substr = String.sub cellName !last (pos - !last) in
            indexes := (int_of_string substr) :: !indexes
        | _ -> ()
      in
      String.iteri split cellName;
      (* now `indexes` contains the indexes of the cell in the multidimensional array,
       * in reverse order *)
      let arrayId = VarContext.index_of_var arraycont (None, arrayName) in
      Hashtbl.add arraycelltovar (arrayId, List.rev !indexes) cellId
    in
    Callback.register "cb_register_global_array_cell" cb_register_global_array_cell;

    (* C callbacks for global const arrays of integers *)
    let constarraycont = VarContext.create () in
    Callback.register "cb_expression_array" (cb_expression_array arraycont constarraycont); (*TODO*)
    let constarraycelltovar = Hashtbl.create 10 in
    let cb_register_global_const_array_name arrayName =
      VarContext.add constarraycont (None, arrayName)
    in
    Callback.register "cb_register_global_const_array_name" cb_register_global_const_array_name;
    let cb_register_global_const_array_cell cellName value =
1103 1104 1105
      VarContext.add constcont (None, cellName);
      let cellId = VarContext.index_of_var constcont (None, cellName) in
      Hashtbl.add const_values cellId value;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
      let firstLSB = String.index cellName '[' in
      let arrayName = String.sub cellName 0 firstLSB in
      let last = ref (firstLSB+1) in
      let indexes = ref [] in
      let split pos = function
        | '[' -> last := pos+1
        | ']' -> 
            let substr = String.sub cellName !last (pos - !last) in
            indexes := (int_of_string substr) :: !indexes
        | _ -> ()
      in
      String.iteri split cellName;
      (* now `indexes` contains the indexes of the cell in the multidimensional array,
       * in reverse order *)
1120 1121
      let arrayId = VarContext.index_of_var constarraycont (None, arrayName) in
      Hashtbl.add constarraycelltovar (arrayId, List.rev !indexes) cellId
1122
    in
1123
    Callback.register "cb_register_global_const_array_cell" cb_register_global_const_array_cell;
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    (* C callbacks for global arrays of channels *)
    (* Assign integer identifiers to channels. *)
    let chanids = Hashtbl.create 50 in
    let next_chan_id = ref 0 in
    let chan_to_id s =
      try Hashtbl.find chanids s 
      with Not_found -> (
        incr next_chan_id;
        Hashtbl.add chanids s !next_chan_id;
        !next_chan_id)
    in
    let chanarraycont = VarContext.create () in
    Callback.register "cb_channel_array" (cb_channel_array chanarraycont);
    let arraycelltochan = Hashtbl.create 10 in
    let cb_register_channel_array_name arrayName =
      VarContext.add chanarraycont (None, arrayName)
    in
    Callback.register "cb_register_channel_array_name" cb_register_channel_array_name;
    let cb_register_channel_array_cell cellName =
      let cellId = chan_to_id cellName in
      let firstLSB = String.index cellName '[' in
      let arrayName = String.sub cellName 0 firstLSB in
      let last = ref (firstLSB+1) in
      let indexes = ref [] in
      let split pos = function
        | '[' -> last := pos+1
        | ']' ->
            let substr = String.sub cellName !last (pos - !last) in
            indexes := (int_of_string substr) :: !indexes
        | _ -> ()
      in
      String.iteri split cellName;
      (* now `indexes` contains the indexes of the cell in the multidimensional array,
       * in reverse order *)
      let arrayId = VarContext.index_of_var chanarraycont (None, arrayName) in
      Hashtbl.add arraycelltochan (arrayId, List.rev !indexes) cellId
    in
    Callback.register "cb_register_channel_array_cell" cb_register_channel_array_cell;

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    let register_constant tmp name value =
      VarContext.add constcont (tmp, name);
      let varid = VarContext.index_of_var constcont (tmp, name) in
      Hashtbl.add const_values varid value
    in
    let cb_register_global_constant name value = register_constant None name value in
    let cb_register_constant tmp name value = register_constant (Some tmp) name value in
    Callback.register "cb_register_global_constant" cb_register_global_constant;
    Callback.register "cb_register_constant" cb_register_constant;
    let register_variable tmp name value =
      VarContext.add varcont (tmp, name);
      let varid = VarContext.index_of_var varcont (tmp, name) in
      Hashtbl.add var_init_values varid value
    in
    let cb_register_global_variable name value = register_variable None name value in
    let cb_register_variable tmp name value = register_variable (Some tmp) name value in
    Callback.register "cb_register_global_variable" cb_register_global_variable;
    Callback.register "cb_register_variable" cb_register_variable;
    let cb_register_global_clock name =
      VarContext.add clockcont (None, name)
    in
    Callback.register "cb_register_global_clock" cb_register_global_clock;
    let cb_register_clock name tmp =
      VarContext.add clockcont (Some tmp, name)
    in
    Callback.register "cb_register_clock" cb_register_clock;

    let rec evaluate_expression = function
      | Constant(c) -> c
      | Clock(_) -> failwith "there should not be clocks in evaluated expressions"
1194
      | Array(_,_) -> failwith "there should not be array accesses in evaluated expressions"
1195
      | Variable(i) -> Hashtbl.find var_init_values i
1196
      | ConstVariable(i) -> Hashtbl.find const_values i
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
      | Sum(a,b) -> (evaluate_expression a) + (evaluate_expression b)
      | Product(a,b) -> (evaluate_expression a) * (evaluate_expression b)
      | Substraction(a,b) -> (evaluate_expression a) - (evaluate_expression b)
      | Division(a,b) -> (evaluate_expression a) / (evaluate_expression b)
    in
    Callback.register "cb_evaluate_expr" evaluate_expression;
    (** Get discrete guard from mixed guard *)
    let filter_disc_guard g = 
      let rec filt_exp = function
        | Clock(_) -> false
        | Sum(x,y) -> (filt_exp x) && (filt_exp y)
        | Product(x,y) -> (filt_exp x) && (filt_exp y)
        | Substraction(x,y) -> (filt_exp x) && (filt_exp y)
        | Division(x,y) -> (filt_exp x) && (filt_exp y)
1211
        | Array(_, l) -> List.for_all (fun x -> filt_exp x) l
1212 1213 1214 1215 1216 1217 1218 1219
        | _ -> true
      in
      let filt_ag = function
        | GuardLess(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardLeq(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardGreater(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardGeq(x,y) -> (filt_exp x) && (filt_exp y)
        | GuardEqual(x,y) -> (filt_exp x) && (filt_exp y)
1220
        | GuardNeq(x,y) -> (filt_exp x) && (filt_exp y)
1221 1222 1223 1224 1225 1226
      in
      List.filter filt_ag g
    in
    (** Get clock guard from mixed guard *)
    let filter_clock_guard g = 
      let rec filt_exp = function
1227 1228 1229 1230 1231 1232 1233
        | Clock(_) -> true
        | Sum(x,y) -> (filt_exp x) || (filt_exp y)
        | Product(x,y) -> (filt_exp x) || (filt_exp y)
        | Substraction(x,y) -> (filt_exp x) || (filt_exp y)
        | Division(x,y) -> (filt_exp x) || (filt_exp y)
        | Array(_, l) -> List.exists (fun x -> filt_exp x) l
        | _ -> false
1234 1235
      in
      let filt_ag = function
1236 1237 1238 1239 1240 1241
        | GuardLess(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardLeq(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardGreater(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardGeq(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardEqual(x,y) -> (filt_exp x) || (filt_exp y)
        | GuardNeq(x,y) -> (filt_exp x) || (filt_exp y)
1242 1243 1244
      in
      List.filter filt_ag g
    in
1245 1246
    let cb_send_channel chan =
      Some(SendChan(chan))
1247
    in
1248 1249
    let cb_recv_channel chan =
      Some(RecvChan(chan))
1250 1251 1252 1253 1254 1255 1256 1257
    in
    Callback.register "cb_send_channel" cb_send_channel;
    Callback.register "cb_recv_channel" cb_recv_channel;
    let build_edge src dst extGuard extUpdate sync procId control =
      {
        edgeSource = src;
        edgeGuard = filter_clock_guard extGuard;
        edgeDiscGuard = filter_disc_guard extGuard;
1258 1259 1260
        edgeUpdates = List.rev (List.map (function
          | (Clock(x),e) -> ClockRef(x),e
          | (Variable(x),e) -> VarRef(x),e
1261
          | (Array(a,l),e) -> ArrayRef(a,l),e
1262 1263
          | _ -> failwith "incorrect LHS for update")
        extUpdate);
1264 1265 1266 1267
        edgeTarget = dst;
        edgeSync = sync;
        edgeProc = procId;
        edgeControllable = control;
1268 1269
        (* TODO currently set to default *)
        edgeCost = Costs.edge_cost_def; 
1270 1271 1272
      }
    in
    Callback.register "cb_build_edge" build_edge;
1273
    let build_location id name committed urgent guard edges procId costRate =
1274 1275 1276 1277 1278 1279 1280 1281
      {
        locId = id;
        locName = name;
        locCommitted = committed;
        locUrgent = urgent;
        locInvar = guard;
        locEdges = edges;
        locProc = procId;
1282
        locRate = costRate;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      }
    in
    Callback.register "cb_build_location" build_location;
    let build_process name id locations init =
      {
        procName = name;
        procId = id;
        procLocations = locations;
        procInitLoc = init;
      }
    in
    Callback.register "cb_build_process" build_process;
1295
    let build_location_array n = Array.make n (build_location 0 "" false false [] [] 0 Costs.loc_rate_def) in
1296 1297 1298
    Callback.register "cb_build_location_array" build_location_array;
    let build_process_array n = Array.make n (build_process "" 0 (build_location_array 0) 0) in
    Callback.register "cb_build_process_array" build_process_array;
1299 1300
    let build_ta procs query = build_ta_from_processes
      clockcont varcont var_init_values arraycelltovar arraycelltochan constarraycelltovar constcont const_values procs query in
1301
    Callback.register "cb_build_ta" build_ta;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    let global_var_index varName =
      try
        VarContext.index_of_var varcont (None,varName)
      with
        | Not_found -> -1
    in
    Callback.register "cb_global_var_index" global_var_index;
    let local_var_index procId varName =
      try
        VarContext.index_of_var varcont (Some procId,varName)
      with
        | Not_found -> -1
    in
    Callback.register "cb_local_var_index" local_var_index;
    utap_from_file tafile qfile
mcolange's avatar
mcolange committed
1317 1318

  let from_file tafile qfile ?scale:(scale=1) ?enlarge:(enlarge=0) () = 
1319
    let ta = make_ta tafile qfile in
mcolange's avatar
mcolange committed
1320 1321 1322 1323
    ta
  
end