Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
PleinDeDk
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
2
Issues
2
List
Boards
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Guillaume GENESTIER
PleinDeDk
Commits
0bd83659
Commit
0bd83659
authored
Mar 12, 2018
by
Gaspard Ferey
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Work on Sudoku solving with Dedukti.
parent
fbd1a896
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
373 additions
and
0 deletions
+373
-0
Sudoku/sudoku.dk
Sudoku/sudoku.dk
+175
-0
Sudoku/sudoku2.dk
Sudoku/sudoku2.dk
+198
-0
No files found.
Sudoku/sudoku.dk
0 → 100644
View file @
0bd83659
ind : Type.
1 : ind.
2 : ind.
3 : ind.
4 : ind.
5 : ind.
6 : ind.
7 : ind.
8 : ind.
9 : ind.
X : ind.
def P : ind -> ind.
[] P 1 --> X.
[] P 2 --> 1.
[] P 3 --> 2.
[] P 4 --> 3.
[] P 5 --> 4.
[] P 6 --> 5.
[] P 7 --> 6.
[] P 8 --> 7.
[] P 9 --> 8.
def S : ind -> ind.
[] S 1 --> 2.
[] S 2 --> 3.
[] S 3 --> 4.
[] S 4 --> 5.
[] S 5 --> 6.
[] S 6 --> 7.
[] S 7 --> 8.
[] S 8 --> 9.
[] S 9 --> X.
def trunc3 : ind -> ind.
[] trunc3 X --> X.
[] trunc3 1 --> 1.
[] trunc3 4 --> 1.
[] trunc3 7 --> 1.
[i] trunc3 i --> P i.
bool : Type.
T : bool.
F : bool.
def and : bool -> bool -> bool.
[x] and T x --> x
[x] and F x --> F.
def or : bool -> bool -> bool.
[x] or T x --> T
[x] or F x --> x.
def not : bool -> bool.
[] not T --> F
[] not F --> T.
def eq : ind -> ind -> bool.
[x] eq x x --> T
[x,y] eq x y --> F.
def ite : A : Type -> bool -> A -> A -> A.
[A,x] ite A T x _ --> x
[A,x] ite A F _ x --> x.
ind_list : Type.
Empty' : ind_list.
Cons' : ind -> ind_list -> ind_list.
sudo : Type.
Empty : sudo.
Cons : ind_list -> sudo -> sudo.
def E : ind_list :=
Cons' X (Cons' X (Cons' X (Cons' X (Cons' X (Cons' X (Cons' X (Cons' X (Cons' X Empty')))))))).
def empty_sudo : sudo :=
Cons E (Cons E (Cons E (Cons E (Cons E (Cons E (Cons E (Cons E (Cons E Empty )))))))).
def set' : ind -> ind -> ind_list -> ind_list.
[j,k,a,l] set' j k (Cons' a l) --> ite ind_list (eq j 1) (Cons' k l) (Cons' a (set' (P j) k l)).
def set : ind -> ind -> ind -> sudo -> sudo.
[i,j,k,a,l] set i j k (Cons a l) --> ite sudo (eq i 1) (Cons (set' j k a) l) (Cons a (set (P i) j k l)).
def get' : ind -> ind_list -> ind.
[j,a,l] get' j (Cons' a l) --> ite ind (eq j 1) a (get' (P j) l).
def get : ind -> ind -> sudo -> ind.
[i,j,a,l] get i j (Cons a l) --> ite ind (eq i 1) (get' j a) (get (P i) j l).
def exists' : (ind -> bool) -> ind -> bool.
[f ] exists' f X --> F
[f,i] exists' f i --> or (f i) (exists' f (S i)).
def exists : (ind -> bool) -> bool := f => exists' f 1.
def mem_line : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_line i j k s --> exists (i' => eq (get i' j s) k).
def mem_col : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_col i j k s --> exists (j' => eq (get i j' s) k).
def mem_squ : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_squ i j k s -->
(i':ind =>
j':ind =>
or (or (eq (get i' j' s) k)
(or (eq (get (S i') j' s) k)
(eq (get (S (S i')) j' s) k)))
(or (or (eq (get i' (S j') s) k)
(or (eq (get (S i') (S j') s) k)
(eq (get (S (S i')) (S j') s) k)))
(or (eq (get i' (S (S j')) s) k)
(or (eq (get (S i') (S (S j')) s) k)
(eq (get (S (S i')) (S (S j')) s) k))))
)
(trunc3 i) (trunc3 j).
def check : ind -> ind -> ind -> sudo -> bool :=
i => j => k => s =>
and (not (mem_line i j k s))
( and (not (mem_col i j k s))
(not (mem_squ i j k s))).
solution : Type.
success : sudo -> solution.
fail : solution.
def iffail : solution -> solution -> solution.
[x] iffail (success x) _ --> success x
[d] iffail fail d --> d.
def solve : ind -> ind -> ind -> sudo -> solution.
[i,s] solve i X _ s --> solve (S i) 1 1 s.
[ s] solve X _ _ s --> success s.
[i,j,s] solve i j X s --> fail.
[i,j,k,s] solve i j k s -->
ite solution
(eq (get i j s) X)
(ite solution
(check i j k s)
(iffail
(solve i (S j) 1 (set i j k s))
(solve i j (S k) s)
)
(solve i j (S k) s)
)
(solve i (S j) 1 s).
def solve_sudo : sudo -> solution := s => solve 1 1 1 s.
def extract_sol : solution -> sudo.
[x] extract_sol (success x) --> x.
def sol := solve_sudo empty_sudo.
#EVAL sol.
Sudoku/sudoku2.dk
0 → 100644
View file @
0bd83659
ind : Type.
1 : ind.
2 : ind.
3 : ind.
4 : ind.
5 : ind.
6 : ind.
7 : ind.
8 : ind.
9 : ind.
X : ind.
def P : ind -> ind.
[] P 1 --> X.
[] P 2 --> 1.
[] P 3 --> 2.
[] P 4 --> 3.
[] P 5 --> 4.
[] P 6 --> 5.
[] P 7 --> 6.
[] P 8 --> 7.
[] P 9 --> 8.
def S : ind -> ind.
[] S 1 --> 2.
[] S 2 --> 3.
[] S 3 --> 4.
[] S 4 --> 5.
[] S 5 --> 6.
[] S 6 --> 7.
[] S 7 --> 8.
[] S 8 --> 9.
[] S 9 --> X.
def trunc3 : ind -> ind.
[] trunc3 1 --> 1
[] trunc3 2 --> 1
[] trunc3 3 --> 1
[] trunc3 4 --> 4
[] trunc3 5 --> 4
[] trunc3 6 --> 4
[] trunc3 7 --> 7
[] trunc3 8 --> 7
[] trunc3 9 --> 7.
bool : Type.
T : bool.
F : bool.
def and : bool -> bool -> bool.
[x] and T x --> x
[x] and F x --> F.
def or : bool -> bool -> bool.
[x] or T x --> T
[x] or F x --> x.
def not : bool -> bool.
[] not T --> F
[] not F --> T.
def eq : ind -> ind -> bool.
[x] eq x x --> T
[x,y] eq x y --> F.
def ite : A : Type -> bool -> A -> A -> A.
[A,x] ite A T x _ --> x
[A,x] ite A F _ x --> x.
list : A : Type -> Type.
l : A : Type -> A -> A -> A -> A -> A -> A -> A -> A -> A -> list A.
def get' : A : Type -> ind -> list A -> A.
[A,x] get' A 1 (l A x _ _ _ _ _ _ _ _) --> x
[A,x] get' A 2 (l A _ x _ _ _ _ _ _ _) --> x
[A,x] get' A 3 (l A _ _ x _ _ _ _ _ _) --> x
[A,x] get' A 4 (l A _ _ _ x _ _ _ _ _) --> x
[A,x] get' A 5 (l A _ _ _ _ x _ _ _ _) --> x
[A,x] get' A 6 (l A _ _ _ _ _ x _ _ _) --> x
[A,x] get' A 7 (l A _ _ _ _ _ _ x _ _) --> x
[A,x] get' A 8 (l A _ _ _ _ _ _ _ x _) --> x
[A,x] get' A 9 (l A _ _ _ _ _ _ _ _ x) --> x.
def set' : A : Type -> ind -> (A -> A) -> list A -> list A.
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 1 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A (k x1) x2 x3 x4 x5 x6 x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 2 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 (k x2) x3 x4 x5 x6 x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 3 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 (k x3) x4 x5 x6 x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 4 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 (k x4) x5 x6 x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 5 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 x4 (k x5) x6 x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 6 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 x4 x5 (k x6) x7 x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 7 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 x4 x5 x6 (k x7) x8 x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 8 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 x4 x5 x6 x7 (k x8) x9)
[A,k,x1,x2,x3,x4,x5,x6,x7,x8,x9] set' A 9 k (l A x1 x2 x3 x4 x5 x6 x7 x8 x9) --> (l A x1 x2 x3 x4 x5 x6 x7 x8 (k x9) ).
def sudo : Type := list (list ind).
def E : list ind := l ind X X X X X X X X X.
def empty_sudo : sudo := l (list ind) E E E E E E E E E.
def get : ind -> ind -> sudo -> ind.
[i,j,s] get i j s --> (get' ind j (get' (list ind) i s)).
def set : ind -> ind -> ind -> sudo -> sudo.
[i,j,k,s] set i j k s --> set' (list ind) i (set' ind j (x => k)) s.
def exists' : (ind -> bool) -> ind -> bool.
[f ] exists' f X --> F
[f,i] exists' f i --> or (f i) (exists' f (S i)).
def exists : (ind -> bool) -> bool := f => exists' f 1.
def mem_line : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_line i j k s --> exists (i' => eq (get i' j s) k).
def mem_col : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_col i j k s --> exists (j' => eq (get i j' s) k).
def mem_squ : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_squ i j k s --> F.
def mem_squ2 : ind -> ind -> ind -> sudo -> bool.
[i,j,k,s] mem_squ2 i j k s -->
(i':ind =>
j':ind =>
(or (eq (get i' j' s) k)
(or (eq (get (S i') j' s) k)
(or (eq (get (S (S i')) j' s) k)
(or (eq (get i' (S j') s) k)
(or (eq (get (S i') (S j') s) k)
(or (eq (get (S (S i')) (S j') s) k)
(or (eq (get i' (S (S j')) s) k)
(or (eq (get (S i') (S (S j')) s) k)
(eq (get (S (S i')) (S (S j')) s) k)))))))))
)
(trunc3 i) (trunc3 j).
def check : ind -> ind -> ind -> sudo -> bool :=
i => j => k => s =>
and (not (mem_line i j k s))
( and (not (mem_col i j k s))
(not (mem_squ i j k s))).
solution : Type.
success : sudo -> solution.
fail : solution.
def iffail : solution -> solution -> solution.
[x] iffail (success x) _ --> success x
[d] iffail fail d --> d.
def solve : ind -> ind -> ind -> sudo -> solution.
[i,s] solve i X _ s --> solve (S i) 1 1 s.
[ s] solve X _ _ s --> success s.
[i,j,s] solve i j X s --> fail.
[i,j,k,s] solve i j k s -->
ite solution
(eq (get i j s) X)
(ite solution
(check i j k s)
(iffail
(solve i (S j) 1 (set i j k s))
(solve i j (S k) s)
)
(solve i j (S k) s)
)
(solve i (S j) 1 s).
def solve_sudo : sudo -> solution := s => solve 1 1 1 s.
def extract_sol : solution -> sudo.
[x] extract_sol (success x) --> x.
def sol := solve_sudo empty_sudo.
#EVAL sol.
#EVAL[SNF,1] get 2 2 (extract_sol sol).
#EVAL[SNF,2] get 2 2 (extract_sol sol).
#EVAL[SNF,3] get 2 2 (extract_sol sol).
#EVAL[WHNF,4] mem_squ2 2 2 3 (extract_sol sol).
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment